Direkt zum Inhalt
Merck

Pyrimidine homeostasis is accomplished by directed overflow metabolism.

Nature (2013-08-02)
Marshall Louis Reaves, Brian D Young, Aaron M Hosios, Yi-Fan Xu, Joshua D Rabinowitz
ZUSAMMENFASSUNG

Cellular metabolism converts available nutrients into usable energy and biomass precursors. The process is regulated to facilitate efficient nutrient use and metabolic homeostasis. Feedback inhibition of the first committed step of a pathway by its final product is a classical means of controlling biosynthesis. In a canonical example, the first committed enzyme in the pyrimidine pathway in Escherichia coli is allosterically inhibited by cytidine triphosphate. The physiological consequences of disrupting this regulation, however, have not been previously explored. Here we identify an alternative regulatory strategy that enables precise control of pyrimidine pathway end-product levels, even in the presence of dysregulated biosynthetic flux. The mechanism involves cooperative feedback regulation of the near-terminal pathway enzyme uridine monophosphate kinase. Such feedback leads to build-up of the pathway intermediate uridine monophosphate, which is in turn degraded by a conserved phosphatase, here termed UmpH, with previously unknown physiological function. Such directed overflow metabolism allows homeostasis of uridine triphosphate and cytidine triphosphate levels at the expense of uracil excretion and slower growth during energy limitation. Disruption of the directed overflow regulatory mechanism impairs growth in pyrimidine-rich environments. Thus, pyrimidine homeostasis involves dual regulatory strategies, with classical feedback inhibition enhancing metabolic efficiency and directed overflow metabolism ensuring end-product homeostasis.

MATERIALIEN
Produktnummer
Marke
Produktbeschreibung

Sigma-Aldrich
Aktivkohle, DARCO®, −100 mesh particle size, powder
Sigma-Aldrich
Aktivkohle, powder, -100 particle size (mesh), decolorizing
Sigma-Aldrich
Uracil, ≥99.0%
Sigma-Aldrich
Aktivkohle, DARCO®, 20-40 mesh particle size, granular
Sigma-Aldrich
Aktivkohle-Norit®, Norit® PK 1-3, from peat, steam activated, granular
Sigma-Aldrich
Aktivkohle, untreated, granular, ≤5 mm
Sigma-Aldrich
Aktivkohle, DARCO®, 4-12 mesh particle size, granular
Sigma-Aldrich
Aktivkohle, DARCO®, 12-20 mesh, granular
Sigma-Aldrich
Kohlenstoff, glassy, spherical powder, 2-12 μm, 99.95% trace metals basis
Supelco
Aktivkohle, powder
Sigma-Aldrich
Aktivkohle, acid-washed with hydrochloric acid
Sigma-Aldrich
Aktivkohle-Norit®, Norit® GAC 1240W, from coal, steam activated, granular
Sigma-Aldrich
Kohlenstoff, nanopowder, <100 nm particle size (TEM)
Sigma-Aldrich
Aktivkohle, meets USP testing specifications
Supelco
Aktivkohle, puriss. p.a., powder
Sigma-Aldrich
Aktivkohle-Norit®, Norit® SX2, powder, from peat, multi-purpose activated charcoal, steam activated and acid washed
Sigma-Aldrich
Aktivkohle, suitable for cell culture, suitable for plant cell culture
Sigma-Aldrich
Aktivkohle-Norit®, Norit® RB3, steam activated, rod
Sigma-Aldrich
Uracil, BioReagent, suitable for cell culture
Sigma-Aldrich
Aktivkohle-Norit®, Norit® CA1, wood, chemically activated, powder
Sigma-Aldrich
Aktivkohle, untreated, granular, 8-20 mesh
Sigma-Aldrich
Aktivkohle, untreated, granular, 20-60 mesh
Sigma-Aldrich
Pyrimidin, ≥98.0%
Sigma-Aldrich
Uridine 5′-monophosphate, ≥98%
Supelco
Aktivkohle-Norit®, Norit® RBAA-3, rod
Millipore
Aktivkohle, suitable for GC
Supelco
Aktivkohle, for the determination of AOX, 50-150 μm particle size