Direkt zum Inhalt
Merck
  • Microbial mediation of biogeochemical cycles revealed by simulation of global changes with soil transplant and cropping.

Microbial mediation of biogeochemical cycles revealed by simulation of global changes with soil transplant and cropping.

The ISME journal (2014-04-04)
Mengxin Zhao, Kai Xue, Feng Wang, Shanshan Liu, Shijie Bai, Bo Sun, Jizhong Zhou, Yunfeng Yang
ZUSAMMENFASSUNG

Despite microbes' key roles in driving biogeochemical cycles, the mechanism of microbe-mediated feedbacks to global changes remains elusive. Recently, soil transplant has been successfully established as a proxy to simulate climate changes, as the current trend of global warming coherently causes range shifts toward higher latitudes. Four years after southward soil transplant over large transects in China, we found that microbial functional diversity was increased, in addition to concurrent changes in microbial biomass, soil nutrient content and functional processes involved in the nitrogen cycle. However, soil transplant effects could be overridden by maize cropping, which was attributed to a negative interaction. Strikingly, abundances of nitrogen and carbon cycle genes were increased by these field experiments simulating global change, coinciding with higher soil nitrification potential and carbon dioxide (CO2) efflux. Further investigation revealed strong correlations between carbon cycle genes and CO2 efflux in bare soil but not cropped soil, and between nitrogen cycle genes and nitrification. These findings suggest that changes of soil carbon and nitrogen cycles by soil transplant and cropping were predictable by measuring microbial functional potentials, contributing to a better mechanistic understanding of these soil functional processes and suggesting a potential to incorporate microbial communities in greenhouse gas emission modeling.

MATERIALIEN
Produktnummer
Marke
Produktbeschreibung

Sigma-Aldrich
Aktivkohle, DARCO®, −100 mesh particle size, powder
Sigma-Aldrich
Aktivkohle, powder, -100 particle size (mesh), decolorizing
Sigma-Aldrich
Aktivkohle, DARCO®, 20-40 mesh particle size, granular
Sigma-Aldrich
Aktivkohle-Norit®, Norit® PK 1-3, from peat, steam activated, granular
Sigma-Aldrich
Aktivkohle, untreated, granular, ≤5 mm
Sigma-Aldrich
Aktivkohle, DARCO®, 4-12 mesh particle size, granular
Sigma-Aldrich
Aktivkohle, DARCO®, 12-20 mesh, granular
Sigma-Aldrich
Kohlenstoff, glassy, spherical powder, 2-12 μm, 99.95% trace metals basis
Supelco
Aktivkohle, powder
Sigma-Aldrich
Aktivkohle, acid-washed with hydrochloric acid
Sigma-Aldrich
Aktivkohle-Norit®, Norit® GAC 1240W, from coal, steam activated, granular
Sigma-Aldrich
Kohlenstoff, nanopowder, <100 nm particle size (TEM)
Sigma-Aldrich
Aktivkohle, meets USP testing specifications
Supelco
Aktivkohle, puriss. p.a., powder
Sigma-Aldrich
Aktivkohle-Norit®, Norit® SX2, powder, from peat, multi-purpose activated charcoal, steam activated and acid washed
Sigma-Aldrich
Aktivkohle, suitable for cell culture, suitable for plant cell culture
Sigma-Aldrich
Aktivkohle-Norit®, Norit® RB3, steam activated, rod
Sigma-Aldrich
Aktivkohle-Norit®, Norit® CA1, wood, chemically activated, powder
Sigma-Aldrich
Aktivkohle, untreated, granular, 20-60 mesh
Supelco
Aktivkohle-Norit®, Norit® RBAA-3, rod
Millipore
Aktivkohle, suitable for GC
Supelco
Aktivkohle, for the determination of AOX, 50-150 μm particle size
Kohlenstoff, foil, 50x50mm, thickness 0.2mm, pyrolytic graphite, 99.99%
Kohlenstoff, foil, 10x10mm, thickness 2.0mm, hOpg
Kohlenstoff, rod, 100mm, diameter 1.0mm, graphite, 99.95%
Carbon - Vitreous, rod, 100mm, diameter 5.0mm, glassy carbon
Kohlenstoff, foil, 100x100mm, thickness 0.5mm, flexible graphite, 99.8%
Carbon - Vitreous, foam, 150x150mm, thickness 2.5mm, bulk density 0.05g/cm3, porosity 96.5%
Kohlenstoff, foil, 5x5mm, thickness 2.0mm, hOpg
Carbon - Vitreous, foil, 25x25mm, thickness 0.5mm, glassy carbon