Direkt zum Inhalt
Merck
  • Loss of AF-6/afadin induces cell invasion, suppresses the formation of glandular structures and might be a predictive marker of resistance to chemotherapy in endometrial cancer.

Loss of AF-6/afadin induces cell invasion, suppresses the formation of glandular structures and might be a predictive marker of resistance to chemotherapy in endometrial cancer.

BMC cancer (2015-04-17)
Takuro Yamamoto, Taisuke Mori, Morio Sawada, Hiroshi Matsushima, Fumitake Ito, Makoto Akiyama, Jo Kitawaki
ZUSAMMENFASSUNG

AF-6/afadin plays an important role in the formation of adherence junctions. In breast and colon cancer, loss of AF-6/afadin induces cell migration and cell invasion. We aimed to elucidate the role of AF-6/afadin in human endometrial cancer. Morphology and AF-6/afadin expression in endometrial cancer cell lines was investigated by 3-dimensional culture. We used Matrigel invasion assay to demonstrate AF-6/afadin knockdown induced invasive capability. Cell proliferation assay was performed to estimate chemoresistance to doxorubicin, paclitaxel and cisplatin induced by AF-6/afadin knockdown. The associations between AF-6/afadin expression and clinicopathological status were determined by immunohistochemical analysis in endometrial cancer tissues. Informed consent was obtained from all patients before the study. The majority of cell clumps in 3-dimensional cultures of Ishikawa cells that strongly expressed AF-6/afadin showed round gland-like structures. In contrast, the cell clumps in 3-dimensional cultures of HEC1A and AN3CA cells-both weakly expressing AF-6/afadin-showed irregular gland-like structures and disorganized colonies with no gland-like structures, respectively. AF-6/afadin knockdown resulted in reduced number of gland-like structures in 3-dimensional cultures and enhancement of cell invasion and phosphorylation of ERK1/2 and Src in the highly AF-6/afadin-expressing endometrial cancer cell line. Inhibitors of MAPK/ERK kinase (MEK) (U0126) and Src (SU6656) suppressed the AF-6/afadin knockdown-induced invasive capability. AF-6/afadin knockdown induced chemoresistance to doxorubicin, paclitaxel and cisplatin in Ishikawa cells, not in HEC1A. Immunohistochemical analysis showed that AF-6/afadin expression was significantly associated with myometrial invasion and high histological grade. AF-6/afadin regulates cell morphology and invasiveness. Invasive capability is partly regulated through the ERK and Src pathway. The inhibitors to these pathways might be molecular-targeted drugs which suppress myometrial invasion in endometrial cancer. AF-6/afadin could be a useful selection marker for fertility-sparing therapy for patients with atypical hyperplasia or grade 1 endometrioid adenocarcinoma with no myometrial invasion. AF-6/afadin knockdown induced chemoresistance especially to cisplatin. Therefore, loss of AF-6/afadin might be a predictive marker of chemoresistance to cisplatin.

MATERIALIEN
Produktnummer
Marke
Produktbeschreibung

Sigma-Aldrich
Glycerin, ACS reagent, ≥99.5%
Sigma-Aldrich
Glycerin, Molecular Biology, ≥99.0%
Sigma-Aldrich
Glycerin, ReagentPlus®, ≥99.0% (GC)
Sigma-Aldrich
Natriumdodecylsulfat, BioReagent, Molecular Biology, ≥98.5% (GC)
Sigma-Aldrich
2-Mercaptoethanol, Molecular Biology, suitable for electrophoresis, suitable for cell culture, BioReagent, 99% (GC/titration)
Sigma-Aldrich
2-Mercaptoethanol, ≥99.0%
Sigma-Aldrich
Natriumdodecylsulfat, ≥99.0% (GC), dust-free pellets
Sigma-Aldrich
Natriumdodecylsulfat, ACS reagent, ≥99.0%
Sigma-Aldrich
Natriumdodecylsulfat -Lösung, BioUltra, Molecular Biology, 10% in H2O
Sigma-Aldrich
Phenylmethansulfonylfluorid, ≥98.5% (GC)
Sigma-Aldrich
Natriumdodecylsulfat, ReagentPlus®, ≥98.5% (GC)
Sigma-Aldrich
Glycerin, ≥99.5%
Sigma-Aldrich
Natriumpyruvat, powder, BioReagent, suitable for cell culture, suitable for insect cell culture, ≥99%
Sigma-Aldrich
Glycerin -Lösung, 83.5-89.5% (T)
Sigma-Aldrich
2-Mercaptoethanol, BioUltra, Molecular Biology, ≥99.0% (GC)
Sigma-Aldrich
Natriumpyruvat, ReagentPlus®, ≥99%
Sigma-Aldrich
Natriumdodecylsulfat, BioUltra, Molecular Biology, ≥99.0% (GC)
Sigma-Aldrich
Glycerin, BioReagent, suitable for cell culture, suitable for insect cell culture, suitable for electrophoresis, ≥99% (GC)
Sigma-Aldrich
Natriumdodecylsulfat -Lösung, BioUltra, 20% in H2O
Sigma-Aldrich
Glycerin, BioUltra, Molecular Biology, anhydrous, ≥99.5% (GC)
Supelco
Glycerin, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
Glycerin, BioXtra, ≥99% (GC)
Supelco
Natriumdodecylsulfat, dust-free pellets, suitable for electrophoresis, Molecular Biology, ≥99.0% (GC)
Sigma-Aldrich
Phenylmethansulfonylfluorid, ≥99.0% (T)
USP
Glycerin, United States Pharmacopeia (USP) Reference Standard
Supelco
Natriumdodecylsulfat, suitable for ion pair chromatography, LiChropur, ≥99.0%
Sigma-Aldrich
Bromphenolblau, Sulton Form, ACS reagent
Sigma-Aldrich
Glycerin, FCC, FG
Sigma-Aldrich
Bromphenolblau, titration: suitable
Sigma-Aldrich
Natriumdodecylsulfat, BioXtra, ≥99.0% (GC)