Direkt zum Inhalt
Merck
  • Roles of inorganic oxide nanoparticles on extraction efficiency of electrospun polyethylene terephthalate nanocomposite as an unbreakable fiber coating.

Roles of inorganic oxide nanoparticles on extraction efficiency of electrospun polyethylene terephthalate nanocomposite as an unbreakable fiber coating.

Journal of chromatography. A (2014-12-17)
Habib Bagheri, Ali Roostaie
ZUSAMMENFASSUNG

In the present work, the roles of inorganic oxide nanoparticles on the extraction efficiency of polyethylene terephthalate-based nanocomposites were extensively studied. Four fiber coatings based on polyethylene terephthalate nanocomposites containing different types of nanoparticles along with a pristine polyethylene terephthalate polymer were conveniently electrospun on stainless steel wires. The applicability of new fiber coatings were examined by headspace-solid phase microextraction of some environmentally important volatile organic compound such as benzene, toluene, ethylbenzene and xylene (BTEX), as model compounds, from aqueous samples. Subsequently, the extracted analytes were transferred into a gas chromatography by thermal desorption. Parameters affecting the morphology and capability of the prepared nanocomposites including the type of nanoparticles and their doping levels along with the coating time were optimized. Four types of nanoparticles including Fe3O4, SiO2, CoO and NiO were examined as the doping agents and among them the presence of SiO2 in the prepared nanocomposite was prominent. The homogeneity and the porous surface structure of the SiO2-polyethylene terephthalate nanocomposite were confirmed by scanning electron microscopy indicating that the nanofibers diameters were lower than 300 nm. In addition, important parameters influencing the extraction and desorption process such as temperature and extraction time, ionic strength and desorption conditions were optimized. Eventually, the developed method was validated by gas chromatography-mass spectrometry. Under optimized conditions, the relative standard deviation values for a double distilled water spiked with the selected volatile organic compounds at 50 ng L(-1) were 2-7% (n=3) while the limits of detection were between 0.7 and 0.9 ng L(-1). The method was linear in the concentration range of 10 to 1,000 ng L(-1) (R(2)>0.9992). Finally, the developed method was applied to the analysis of Kalan dam and tap water samples and the relative recovery values were found to be in the range of 86-102%.

MATERIALIEN
Produktnummer
Marke
Produktbeschreibung

Sigma-Aldrich
Methanol, suitable for HPLC, ≥99.9%
Sigma-Aldrich
Methanol, ACS reagent, ≥99.8%
Sigma-Aldrich
Natriumhydroxid, ACS reagent, ≥97.0%, pellets
Sigma-Aldrich
Toluol, ACS reagent, ≥99.5%
Sigma-Aldrich
Natriumhydroxid, reagent grade, ≥98%, pellets (anhydrous)
Sigma-Aldrich
Methanol, HPLC Plus, ≥99.9%
Sigma-Aldrich
Natronlauge, 50% in H2O
Sigma-Aldrich
Toluol, HPLC Plus, for HPLC, GC, and residue analysis, ≥99.9%
Sigma-Aldrich
Toluol, anhydrous, 99.8%
Sigma-Aldrich
Benzol, suitable for HPLC, ≥99.9%
Sigma-Aldrich
Methanol, anhydrous, 99.8%
Sigma-Aldrich
Natronlauge, BioUltra, Molecular Biology, 10 M in H2O
Sigma-Aldrich
Benzol, ACS reagent, ≥99.0%
Sigma-Aldrich
Natriumchlorid, Molecular Biology, DNase, RNase, and protease, none detected, ≥99% (titration)
Sigma-Aldrich
Natronlauge, 1.0 N, BioReagent, suitable for cell culture
Sigma-Aldrich
Natriumchlorid -Lösung, 5 M in H2O, BioReagent, Molecular Biology, suitable for cell culture
Sigma-Aldrich
Natriumchlorid, BioXtra, ≥99.5% (AT)
Sigma-Aldrich
Natriumchlorid, BioReagent, suitable for cell culture, suitable for insect cell culture, suitable for plant cell culture, ≥99%
Sigma-Aldrich
Natriumchlorid -Lösung, 0.9% in water, BioXtra, suitable for cell culture
Sigma-Aldrich
Natriumhydroxid, BioXtra, ≥98% (acidimetric), pellets (anhydrous)
Supelco
Benzol, analytical standard
Sigma-Aldrich
Natriumhydroxid, puriss., meets analytical specification of Ph. Eur., BP, NF, E524, 98-100.5%, pellets
Sigma-Aldrich
Methanol, Laboratory Reagent, ≥99.6%
Sigma-Aldrich
Methanol, suitable for HPLC, gradient grade, suitable as ACS-grade LC reagent, ≥99.9%
Sigma-Aldrich
Natriumhydroxid, reagent grade, 97%, powder
Sigma-Aldrich
Methanol, ACS spectrophotometric grade, ≥99.9%
Sigma-Aldrich
Natriumhydroxid, pellets, semiconductor grade, 99.99% trace metals basis
Sigma-Aldrich
Methanol, ACS reagent, ≥99.8%
Sigma-Aldrich
Natriumchlorid -Lösung, 5 M
SAFC
Natriumchlorid -Lösung, 5 M