Direkt zum Inhalt
Merck

Effects of obesity and gestational diabetes mellitus on placental phospholipids.

Diabetes research and clinical practice (2015-05-30)
Olaf Uhl, Hans Demmelmair, María Teresa Segura, Jesús Florido, Ricardo Rueda, Cristina Campoy, Berthold Koletzko
ZUSAMMENFASSUNG

Gestational diabetes mellitus (GDM) is associated with adverse effects in the offspring. The composition of placental glycerophospholipids (GPL) is known to be altered in GDM and might reflect an aberrant fatty acid transfer across the placenta and thus affect the foetal body composition. The aim of this study was to investigate possible effects of obesity and GDM, respectively, on placental GPL species composition. We investigated molecular species of phosphatidylcholine (PC), phosphatidylethanolamine (PE) and phosphatidylserine (PS) in term placentas from controls (lean non-diabetic, body-mass-index [BMI] 18-24.9k g/m(2), n=31), obese non-diabetics (BMI ≥30 kg/m(2), n=17) and lean diabetics (n=15), using liquid chromatography - triple quadrupole mass spectrometry. PE(16:0/22:6) and PE(18:0/20:4) were increased in GDM and decreased species were PC(18:0/20:3), PC(18:1/20:3) and PS(18:0/18:2). A consistent difference between BMI related changes and changes caused by GDM was not observed. Arachidonic acid percentages of cord blood correlated with placental PC(16:0/20:4), whereas foetal docosahexaenoic acid correlated to placental PE species. Furthermore, a positive correlation of placental weight was found to levels of PE containing arachidonic acid. We demonstrated that obesity and GDM are associated with decreased dihomo-gamma-linolenic acid and increased arachidonic acid and docosahexaenoic acid contents of placental GPL, with unknown consequences for the foetus. PC(16:0/20:4) was identified as the major component for the supply of arachidonic acid to the foetal circulation, whereas PE containing arachidonic acid was found to be associated to the placental and infant growth.

MATERIALIEN
Produktnummer
Marke
Produktbeschreibung

Sigma-Aldrich
2-Propanol, BioReagent, ≥99.5%, Molecular Biology
Sigma-Aldrich
Cholesterin, Sigma Grade, ≥99%
Sigma-Aldrich
Methanol, anhydrous, 99.8%
Sigma-Aldrich
2-Propanol, anhydrous, 99.5%
Sigma-Aldrich
Ammoniumacetat, Molecular Biology, ≥98%
Sigma-Aldrich
Isopropylalkohol, ≥99.7%, FCC, FG
Sigma-Aldrich
Cholesterin, powder, BioReagent, suitable for cell culture, ≥99%
Sigma-Aldrich
Ammoniumacetat -Lösung, Molecular Biology, 7.5 M
Sigma-Aldrich
2-Propanol, BioUltra, Molecular Biology, ≥99.5% (GC)
Sigma-Aldrich
SyntheChol® NS0-Supplement, 500 ×, synthetic cholesterol, animal component-free, sterile-filtered, aqueous solution, suitable for cell culture
Sigma-Aldrich
Ammoniumacetat, 99.999% trace metals basis
Sigma-Aldrich
Essigsäure, suitable for luminescence, BioUltra, ≥99.5% (GC)
Sigma-Aldrich
Cholesterin, from sheep wool, ≥92.5% (GC), powder
Sigma-Aldrich
2-Propanol, electronic grade, 99.999% trace metals basis
Sigma-Aldrich
5α-Androstan-17β-ol-3-on, ≥97.5%
Sigma-Aldrich
Ammoniumacetat, reagent grade, ≥98%
Sigma-Aldrich
Ammoniumacetat, BioXtra, ≥98%
Sigma-Aldrich
Essigsäure, ≥99.5%, FCC, FG
Sigma-Aldrich
Essigsäure, natural, ≥99.5%, FG
Sigma-Aldrich
5α-Androstan-17β-ol-3-on, purum, ≥99.0% (TLC)
Sigma-Aldrich
2-Propanol, HPLC Plus, for HPLC, GC, and residue analysis, 99.9%, poly coated bottles
Sigma-Aldrich
Methanol, suitable for NMR (reference standard)
SAFC
Cholesterin, from sheep wool, Controlled origin, meets USP/NF testing specifications
Sigma-Aldrich
Cholesterin, from lanolin, ≥99.0% (GC)
Sigma-Aldrich
Methanol -Lösung, suitable for NMR (reference standard), 4% in methanol-d4 (99.8 atom % D), NMR tube size 3 mm × 8 in.
Sigma-Aldrich
Essigsäure-12C2, 99.9 atom % 12C