Direkt zum Inhalt
Merck
  • Changes in protein expression of pacific oyster Crassostrea gigas exposed in situ to urban sewage.

Changes in protein expression of pacific oyster Crassostrea gigas exposed in situ to urban sewage.

Environmental science and pollution research international (2014-11-16)
Fabrício Flores-Nunes, Tânia Gomes, Rui Company, Roberta R M Moraes, Silvio T Sasaki, Satie Taniguchi, Márcia C Bicego, Cláudio M R Melo, Afonso C D Bainy, Maria J Bebianno
ZUSAMMENFASSUNG

The composition and concentration of substances in urban effluents are complex and difficult to measure. These contaminants elicit biological responses in the exposed organisms. Proteomic analysis is a powerful tool in environmental toxicology by evidencing alterations in protein expression due to exposure to contaminants and by providing a useful framework for the development of new potential biomarkers. The aim of this study was to determine changes in protein expression signatures (PES) in the digestive gland of oysters Crassostrea gigas transplanted to two farming areas (LIS and RIB) and to one area contaminated by sanitary sewage (BUC) after 14 days of exposure. This species is one of the most cultivated molluscs in the world. The identified proteins are related to the cytoskeleton (CKAP5 and ACT2), ubiquitination pathway conjugation (UBE3C), G protein-coupled receptor and signal transduction (SVEP1), and cell cycle/division (CCNB3). CKAP5 showed higher expression in oysters kept at BUC in comparison with those kept at the farming areas, while ACT2, UBE3C, SVEP1, and CCNB3 were suppressed. The results suggest that these changes might lead to DNA damage, apoptosis, and interference with the immune system in oyster C. gigas exposed to sewage and give initial information on PES of C. gigas exposed to sanitary sewage, which can subsequently be useful in the development of more sensitive tools for biomonitoring coastal areas, particularly those devoted mainly to oyster farming activities.

MATERIALIEN
Produktnummer
Marke
Produktbeschreibung

Sigma-Aldrich
Proteasehemmer-Cocktail, for use with mammalian cell and tissue extracts, DMSO solution
Sigma-Aldrich
HEPES, ≥99.5% (titration)
Sigma-Aldrich
Saccharose, Molecular Biology, ≥99.5% (GC)
Sigma-Aldrich
HEPES, BioPerformance Certified, ≥99.5% (titration)
Sigma-Aldrich
Saccharose, ≥99.5% (GC)
Sigma-Aldrich
Saccharose, ≥99.5% (GC), BioXtra
Sigma-Aldrich
Saccharose, BioUltra, Molecular Biology, ≥99.5% (HPLC)
Sigma-Aldrich
Phenylmethansulfonylfluorid, ≥98.5% (GC)
Sigma-Aldrich
Chlorotrimethylsilan, ≥98.0% (GC)
Supelco
N,O-Bis-(trimethylsilyl)-trifluoracetamid mit Trimethylchlorsilan, with 1% trimethylchlorosilane, derivatization grade (GC derivatization), LiChropur
Sigma-Aldrich
Saccharose, ≥99.5% (GC)
Sigma-Aldrich
Saccharose, ≥99.5% (GC), BioReagent, suitable for cell culture, suitable for insect cell culture
Sigma-Aldrich
N,O-Bis(trimethylsilyl)trifluoracetamid, ≥99%
Sigma-Aldrich
Saccharose, ACS reagent
Sigma-Aldrich
Chlorotrimethylsilan, purified by redistillation, ≥99%
Sigma-Aldrich
HEPES-Pufferlösung, 1 M in H2O
Sigma-Aldrich
Phenylmethansulfonylfluorid, ≥99.0% (T)
Sigma-Aldrich
HEPES, BioUltra, Molecular Biology, ≥99.5% (T)
Sigma-Aldrich
Saccharose, ≥99.5% (GC), Grade II, suitable for plant cell culture
Sigma-Aldrich
Saccharose, puriss., meets analytical specification of Ph. Eur., BP, NF
Sigma-Aldrich
HEPES, BioXtra, suitable for mouse embryo cell culture, ≥99.5% (titration)
Sigma-Aldrich
HEPES, BioXtra, pH 5.0-6.5 (1 M in H2O), ≥99.5% (titration)
Sigma-Aldrich
Saccharose, ≥99% (GC), Grade I, suitable for plant cell culture
Sigma-Aldrich
Saccharose, meets USP testing specifications
Sigma-Aldrich
HEPES, anhydrous, free-flowing, Redi-Dri, ≥99.5%
Sigma-Aldrich
Chlorotrimethylsilan, Wacker Chemie AG, ≥99.0% (GC)
Sigma-Aldrich
Chlortrimethylsilan -Lösung, 1.0 M in THF