Direkt zum Inhalt
Merck

Cell-Based High-Throughput Screening for Aromatase Inhibitors in the Tox21 10K Library.

Toxicological sciences : an official journal of the Society of Toxicology (2015-07-05)
Shiuan Chen, Jui-Hua Hsieh, Ruili Huang, Srilatha Sakamuru, Li-Yu Hsin, Menghang Xia, Keith R Shockley, Scott Auerbach, Noriko Kanaya, Hannah Lu, Daniel Svoboda, Kristine L Witt, B Alex Merrick, Christina T Teng, Raymond R Tice
ZUSAMMENFASSUNG

Multiple mechanisms exist for endocrine disruption; one nonreceptor-mediated mechanism is via effects on aromatase, an enzyme critical for maintaining the normal in vivo balance of androgens and estrogens. We adapted the AroER tri-screen 96-well assay to 1536-well format to identify potential aromatase inhibitors (AIs) in the U.S. Tox21 10K compound library. In this assay, screening with compound alone identifies estrogen receptor alpha (ERα) agonists, screening in the presence of testosterone (T) identifies AIs and/or ERα antagonists, and screening in the presence of 17β-estradiol (E2) identifies ERα antagonists. Screening the Tox-21 library in the presence of T resulted in finding 302 potential AIs. These compounds, along with 31 known AI actives and inactives, were rescreened using all 3 assay formats. Of the 333 compounds tested, 113 (34%; 63 actives, 50 marginal actives) were considered to be potential AIs independent of cytotoxicity and ER antagonism activity. Structure-activity analysis suggested the presence of both conventional (eg, 1, 2, 4, - triazole class) and novel AI structures. Due to their novel structures, 14 of the 63 potential AI actives, including both drugs and fungicides, were selected for confirmation in the biochemical tritiated water-release aromatase assay. Ten compounds were active in the assay; the remaining 4 were only active in high-throughput screen assay, but with low efficacy. To further characterize these 10 novel AIs, we investigated their binding characteristics. The AroER tri-screen, in high-throughput format, accurately and efficiently identified chemicals in a large and diverse chemical library that selectively interact with aromatase.

MATERIALIEN
Produktnummer
Marke
Produktbeschreibung

Sigma-Aldrich
Dimethylsulfoxid, Hybri-Max, sterile-filtered, BioReagent, suitable for hybridoma, ≥99.7%
Sigma-Aldrich
Dimethylsulfoxid, ACS reagent, ≥99.9%
Sigma-Aldrich
Dimethylsulfoxid, Molecular Biology
Sigma-Aldrich
Dimethylsulfoxid, sterile-filtered, BioPerformance Certified, meets EP, USP testing specifications, suitable for hybridoma
Sigma-Aldrich
Dimethylsulfoxid, ReagentPlus®, ≥99.5%
Sigma-Aldrich
Dimethylsulfoxid, anhydrous, ≥99.9%
Sigma-Aldrich
Dimethylsulfoxid, ≥99.5% (GC), suitable for plant cell culture
Sigma-Aldrich
4-Hydroxytamoxifen, ≥70% Z isomer (remainder primarily E-isomer)
Sigma-Aldrich
Dimethylsulfoxid, BioUltra, Molecular Biology, ≥99.5% (GC)
Sigma-Aldrich
Dimethylsulfoxid, meets EP testing specifications, meets USP testing specifications
Sigma-Aldrich
Dimethylsulfoxid, PCR Reagent
Sigma-Aldrich
Tetraoctylammoniumbromid, 98%
Sigma-Aldrich
Phenolrot, powder, BioReagent, suitable for cell culture
Sigma-Aldrich
Phenolrot, ACS reagent
Sigma-Aldrich
Letrozol, ≥98% (HPLC)
Sigma-Aldrich
Dimethylsulfoxid -Lösung, 50 wt. % in H2O
Sigma-Aldrich
8-Octanoyloxypyren-1,3,6-Trisulfonsäure Trinatriumsalz, suitable for fluorescence, ≥90% (HPCE)
Sigma-Aldrich
Dimethylsulfoxid, ≥99.6%, ReagentPlus®