Direkt zum Inhalt
Merck
  • Fluorescent dye incorporation causes weakened gene association and intracellular aggregate formation in nonviral carriers.

Fluorescent dye incorporation causes weakened gene association and intracellular aggregate formation in nonviral carriers.

The journal of gene medicine (2015-03-04)
Abbygail A Foster, Nikki L Ross, Millicent O Sullivan
ZUSAMMENFASSUNG

The successful application of nonviral gene transfer technologies requires both improved understanding and control with respect to intracellular trafficking and release. However, the intracellular space is highly complex and hence well-defined, stable structures are necessary to probe the stages of the delivery pathway. Fluorescent labeling is a regularly used approach to monitor nonviral delivery and release, yet few studies investigate the effects of label incorporation on the structure and activity of gene-containing vehicles. In the present study, the impacts of label incorporation on the assembly and gene transfer capacity of DNA polyplexes were determined through the utilization of a model DNA-polyethylenimine (PEI) delivery system. PEI was fluorescently labeled with the Oregon Green® dye prior to polyplex formation and delivery to CHO-K1 cells. The present study provides evidence showing that routine labeling strategies for polyplexes weakened DNA binding affinity, produced large quantities of extracellular structures and significantly increased intracellular polyplex aggregation. Additionally, cellular internalization studies showed that increased labeling fractions led to reductions in polyplex uptake as a result of weakened complexation. These results not only provide insight into the assembly of these structures, but also help to identify labeling strategies sufficient to preserve activity at the same time as enabling detailed studies of trafficking and disassembly.

MATERIALIEN
Produktnummer
Marke
Produktbeschreibung

Sigma-Aldrich
Natriumchlorid, Molecular Biology, DNase, RNase, and protease, none detected, ≥99% (titration)
Sigma-Aldrich
1,3-Dimethyl-2-imidazolidinon, ≥99.0% (GC)
Sigma-Aldrich
Natriumchlorid -Lösung, 5 M in H2O, BioReagent, Molecular Biology, suitable for cell culture
Sigma-Aldrich
Natriumchlorid, BioXtra, ≥99.5% (AT)
Sigma-Aldrich
Natriumchlorid, BioReagent, suitable for cell culture, suitable for insect cell culture, suitable for plant cell culture, ≥99%
Sigma-Aldrich
Natriumchlorid -Lösung, 0.9% in water, BioXtra, suitable for cell culture
Sigma-Aldrich
1,3-Dimethyl-2-imidazolidinon, absolute, over molecular sieve (H2O ≤0.04%), ≥99.5% (GC)
Sigma-Aldrich
Natriumchlorid -Lösung, 5 M
SAFC
Natriumchlorid -Lösung, 5 M
Sigma-Aldrich
Natriumchlorid, BioUltra, Molecular Biology, ≥99.5% (AT)
Sigma-Aldrich
Natriumchlorid, meets analytical specification of Ph. Eur., BP, USP, 99.0-100.5%
Sigma-Aldrich
Natriumchlorid -Lösung, BioUltra, Molecular Biology, ~5 M in H2O
Sigma-Aldrich
Natriumchlorid, 99.999% trace metals basis
Sigma-Aldrich
1,3-Dimethyl-2-imidazolidinon, reagent grade
Sigma-Aldrich
Natriumchlorid -Lösung, 0.85%
Sigma-Aldrich
Natriumchlorid, BioPerformance Certified, ≥99% (titration), suitable for insect cell culture, suitable for plant cell culture
Sigma-Aldrich
Mevinolin from Aspergillus sp., ≥98% (HPLC)
Sigma-Aldrich
Natriumchlorid, tablet
Sigma-Aldrich
Natriumchlorid-35Cl, 99 atom % 35Cl
Sigma-Aldrich
Natriumchlorid, random crystals, 99.9% trace metals basis
Sigma-Aldrich
Natriumchlorid, AnhydroBeads, −10 mesh, 99.999% trace metals basis