Direkt zum Inhalt
Merck
  • A Synthetic Lethal Interaction between Glutathione Synthesis and Mitochondrial Reactive Oxygen Species Provides a Tumor-Specific Vulnerability Dependent on STAT3.

A Synthetic Lethal Interaction between Glutathione Synthesis and Mitochondrial Reactive Oxygen Species Provides a Tumor-Specific Vulnerability Dependent on STAT3.

Molecular and cellular biology (2015-08-19)
Daniel J Garama, Tiffany J Harris, Christine L White, Fernando J Rossello, Maher Abdul-Hay, Daniel J Gough, David E Levy
ZUSAMMENFASSUNG

Increased production of mitochondrion-derived reactive oxygen species (ROS) is characteristic of a metabolic shift observed during malignant transformation. While the exact sources and roles of ROS in tumorigenesis remain to be defined, it has become clear that maintaining redox balance is critical for cancer cell proliferation and survival and, as such, may represent a vulnerability that can be exploited therapeutically. STAT3, a latent cytosolic transcription factor activated by diverse cytokines and growth factors, has been shown to exhibit an additional, nontranscriptional function in mitochondria, including modulation of electron transport chain activity. In particular, malignant transformation by Ras oncogenes exploits mitochondrial STAT3 functions. We used mass spectrometry-based metabolomics profiling to explore the biochemical basis for the STAT3 dependence of Ras transformation. We identified the gamma-glutamyl cycle, the production of glutathione, and the regulation of ROS as a mitochondrion-STAT3-dependent pathway in Ras-transformed cells. Experimental inhibition of key enzymes in the glutathione cycle resulted in the depletion of glutathione, accumulation of ROS, oxidative DNA damage, and cell death in an oncogenic Ras- and mitochondrial STAT3-dependent manner. These data uncover a synthetic lethal interaction involving glutathione production and mitochondrial ROS regulation in Ras-transformed cells that is governed by mitochondrial STAT3 and might be exploited therapeutically.

MATERIALIEN
Produktnummer
Marke
Produktbeschreibung

Sigma-Aldrich
DAPI, for nucleic acid staining
Sigma-Aldrich
Formaldehyd -Lösung, Molecular Biology, 36.5-38% in H2O
Sigma-Aldrich
Natriumfluorid, ACS reagent, ≥99%
Sigma-Aldrich
DL-Dithiothreitol -Lösung, BioUltra, Molecular Biology, ~1 M in H2O
Sigma-Aldrich
Formaldehyd -Lösung, ACS reagent, 37 wt. % in H2O, contains 10-15% Methanol as stabilizer (to prevent polymerization)
SAFC
Formaldehyd -Lösung, contains 10-15% methanol as stabilizer, 37 wt. % in H2O
Sigma-Aldrich
L-Glutathion reduziert, suitable for cell culture, BioReagent, ≥98.0%, powder
Sigma-Aldrich
L-Glutathion reduziert, ≥98.0%
Supelco
DL-Dithiothreitol -Lösung, 1 M in H2O
Sigma-Aldrich
L-Glutathion, oxidiert, ≥98% (HPLC)
Sigma-Aldrich
Formaldehyd -Lösung, Molecular Biology, BioReagent, ≥36.0% in H2O (T)
Sigma-Aldrich
Natriumfluorid, ReagentPlus®, ≥99%
Sigma-Aldrich
Formaldehyd -Lösung, meets analytical specification of USP, ≥34.5 wt. %
Supelco
Formaldehyd -Lösung, stabilized with methanol, ~37 wt. % in H2O, certified reference material
Sigma-Aldrich
L-Glutathion reduziert, BioXtra, ≥98.0%
Sigma-Aldrich
Natriumfluorid, 99.99% trace metals basis
Sigma-Aldrich
L-Glutathion, oxidiert, ≥98%, lyophilized powder
Sigma-Aldrich
L-Glutathion, oxidiert, BioXtra, ≥98%
Sigma-Aldrich
Natriumfluorid, puriss., meets analytical specification of Ph. Eur., BP, USP, 98.5-100.5% (calc. to the dried substance)
SAFC
L-Glutathion, oxidiert
Sigma-Aldrich
Dihydroethidium, BioReagent, suitable for fluorescence, ≥95% (HPCE)
Sigma-Aldrich
Natriumfluorid, BioXtra, ≥99%
Sigma-Aldrich
L-Glutathion, oxidiert Dinatriumsalz, ≥98%, powder
Sigma-Aldrich
Natriumfluoridlösung
Sigma-Aldrich
Dihydroethidium, ≥95%
Sigma-Aldrich
Natriumfluorid, BioReagent, suitable for insect cell culture, ≥99%
Sigma-Aldrich
L-Glutathion, oxidiert Dinatriumsalz, suitable for cell culture, BioReagent
Sigma-Aldrich
2-Phenylindol, technical grade, 95%
Sigma-Aldrich
Formaldehyd-12C -Lösung, 20% in H2O, 99.9 atom % 12C