Direkt zum Inhalt
Merck

Donepezil reverses intermittent stress-induced generalized chronic pain syndrome in mice.

The Journal of pharmacology and experimental therapeutics (2015-03-26)
Takehiro Mukae, Hitoshi Uchida, Hiroshi Ueda
ZUSAMMENFASSUNG

Treatment of fibromyalgia is an unmet medical need. To develop novel therapies for the treatment of fibromyalgia, we explored pain therapeutic actions of existing pharmaceuticals, which inhibit the somatic symptoms frequently observed in fibromyalgia patients. This study first examined the therapeutic actions of pilocarpine, which inhibits dry-eye and dry-mouth symptoms, using an experimental fibromyalgia-like chronic pain model produced by intermittent cold stress (ICS) in mice. A single intraperitoneal and intracerebroventricular, but not intrathecal, pilocarpine administration attenuated ICS-induced thermal hyperalgesia and mechanical allodynia, and this action was abolished by muscarinic antagonist pirenzepine (i.c.v.). Treatment with 1-10 μg/kg donepezil (i.p.), which can easily penetrate into the brain, also showed similar therapeutic effects. Importantly, we found that both pilocarpine and donepezil produced antihyperalgesic effects via supraspinal action. Furthermore, repeated donepezil treatments completely cured the ICS-induced hyperalgesia and allodynia even after the cessation of drug treatments. Acute and chronic treatments of these cholinomimetics had no effects on the nociceptive threshold in control animals. By contrast, the lack of morphine (i.c.v.) analgesia initially observed in the ICS model remained in ICS model mice treated with long-term donepezil. Collectively, these findings suggest that stimulation of the muscarinic cholinergic system effectively inhibits some mechanisms underlying chronic pain in the ICS model, but does not inhibit the lack of descending pain-inhibitory mechanisms, which are driven by central morphine.

MATERIALIEN
Produktnummer
Marke
Produktbeschreibung

Sigma-Aldrich
Natriumchlorid, Molecular Biology, DNase, RNase, and protease, none detected, ≥99% (titration)
Sigma-Aldrich
Kaliumphosphat, powder, suitable for cell culture, suitable for insect cell culture, suitable for plant cell culture, ≥99.0%
Sigma-Aldrich
Natriumchlorid -Lösung, 5 M in H2O, BioReagent, Molecular Biology, suitable for cell culture
Sigma-Aldrich
Natriumchlorid, BioXtra, ≥99.5% (AT)
Sigma-Aldrich
Natriumchlorid, BioReagent, suitable for cell culture, suitable for insect cell culture, suitable for plant cell culture, ≥99%
Sigma-Aldrich
Natriumchlorid -Lösung, 0.9% in water, BioXtra, suitable for cell culture
Sigma-Aldrich
Natriumchlorid -Lösung, 5 M
SAFC
Natriumchlorid -Lösung, 5 M
Sigma-Aldrich
Kaliumphosphat, ReagentPlus®
Sigma-Aldrich
Kaliumphosphat, Molecular Biology, ≥98.0%
Sigma-Aldrich
Natriumchlorid, BioUltra, Molecular Biology, ≥99.5% (AT)
Sigma-Aldrich
Natriumchlorid, meets analytical specification of Ph. Eur., BP, USP, 99.0-100.5%
Sigma-Aldrich
Natriumchlorid -Lösung, BioUltra, Molecular Biology, ~5 M in H2O
Sigma-Aldrich
Natriumchlorid, 99.999% trace metals basis
Sigma-Aldrich
Kaliumphosphat, BioUltra, Molecular Biology, anhydrous, ≥99.5% (T)
Sigma-Aldrich
Natriumchlorid -Lösung, 0.85%
Sigma-Aldrich
Natriumchlorid, BioPerformance Certified, ≥99% (titration), suitable for insect cell culture, suitable for plant cell culture
Sigma-Aldrich
Kaliumphosphat, 99.99% trace metals basis
Sigma-Aldrich
Natriumchlorid, tablet
Sigma-Aldrich
Natriumchlorid-35Cl, 99 atom % 35Cl
Sigma-Aldrich
Natriumchlorid, random crystals, 99.9% trace metals basis
Sigma-Aldrich
Natriumchlorid, AnhydroBeads, −10 mesh, 99.999% trace metals basis