Saltar al contenido
Merck
  • Insights into chiral recognition mechanisms in supercritical fluid chromatography V. Effect of the nature and proportion of alcohol mobile phase modifier with amylose and cellulose tris-(3,5-dimethylphenylcarbamate) stationary phases.

Insights into chiral recognition mechanisms in supercritical fluid chromatography V. Effect of the nature and proportion of alcohol mobile phase modifier with amylose and cellulose tris-(3,5-dimethylphenylcarbamate) stationary phases.

Journal of chromatography. A (2014-12-09)
Syame Khater, Caroline West
RESUMEN

In enantioselective supercritical fluid chromatography (SFC) with chiral stationary phases (CSP), the elution strength of carbon dioxide is usually modulated by the use of polar organic solvents, also called modifiers. Alcohols like methanol, ethanol and isopropanol are the most commonly used co-solvents. While most applications of chiral SFC are optimized through a process of varying the co-solvent nature and proportion, only a limited number of thorough investigations have been carried out to unravel the effects of the co-solvent on the enantioseparation process. In an attempt to clarify the effect of the mobile phase co-solvent on enantioselective SFC separations, a wide range of compounds (achiral and chiral) were analyzed on an amylosic (Chiralpak AD-H) and a cellulosic (Lux cellulose-1) CSP. The influence of the modifier polarity and steric hindrance must be considered thus several different alcoholic solvents were evaluated: methanol, ethanol, 1-propanol, 2-propanol and 1-butanol, with a proportion of 10% in carbon dioxide. A selected group of racemates was further analyzed with varying proportions of each alcohol ranging from 5 to 25%. Besides, because mixtures of solvents were sometimes reported to produce unexpected results, a 50:50 mixture of methanol and ethanol was also evaluated. Chemometric methods provide some insight into the enantio-separation process and help identifying the differences between the mobile phase conditions.

MATERIALES
Número de producto
Marca
Descripción del producto

Sigma-Aldrich
Metanol, suitable for HPLC, ≥99.9%
Sigma-Aldrich
Alcohol etílico puro 200, Molecular Biology
Sigma-Aldrich
2-Propanol, suitable for HPLC, 99.9%
Sigma-Aldrich
2-Propanol, ACS reagent, ≥99.5%
Sigma-Aldrich
Metanol, ACS reagent, ≥99.8%
Sigma-Aldrich
Alcohol etílico puro, 200 proof, ACS reagent, ≥99.5%
Sigma-Aldrich
Metanol, HPLC Plus, ≥99.9%
Sigma-Aldrich
Alcohol etílico puro, 200 proof, meets USP testing specifications
Sigma-Aldrich
2-Propanol, BioReagent, ≥99.5%, Molecular Biology
Sigma-Aldrich
1-Propanol, suitable for HPLC, ≥99.9%
Sigma-Aldrich
1-Butanol, 99.9%
Sigma-Aldrich
Alcohol isopropílico, meets USP testing specifications
Sigma-Aldrich
2-Propanol, HPLC Plus, for HPLC, GC, and residue analysis, 99.9%
Sigma-Aldrich
1-Butanol, ACS reagent, ≥99.4%
Sigma-Aldrich
Alcohol etílico puro 190, for molecular biology
Sigma-Aldrich
Metanol, Laboratory Reagent, ≥99.6%
Sigma-Aldrich
Metanol, suitable for HPLC, gradient grade, suitable as ACS-grade LC reagent, ≥99.9%
Sigma-Aldrich
2-Propanol, Laboratory Reagent, ≥99.5%
Sigma-Aldrich
1-Butanol, suitable for HPLC, ≥99.7%
Sigma-Aldrich
Metanol, ACS spectrophotometric grade, ≥99.9%
Sigma-Aldrich
Etanol, BioUltra, Molecular Biology, ≥99.8%, (absolute alcohol, without additive, A15 o1)
Sigma-Aldrich
Metanol, ACS reagent, ≥99.8%
Sigma-Aldrich
Alcohol isopropílico, ≥99.7%, FCC, FG
Sigma-Aldrich
2-Propanol, puriss. p.a., ACS reagent, ≥99.8% (GC)
Sigma-Aldrich
Etanol, purum, absolute ethanol, denaturated with 4.8% isopropanol, A15 IPA1, ≥99.8% (based on denaturant-free substance)
Sigma-Aldrich
Metanol, Absolute - Acetone free
Sigma-Aldrich
1-Butanol, puriss. p.a., ACS reagent, reag. ISO, reag. Ph. Eur., ≥99.5% (GC)
Sigma-Aldrich
2-Propanol, BioUltra, Molecular Biology, ≥99.5% (GC)
Sigma-Aldrich
1-Butanol, anhydrous, 99.8%
USP
Metanol, United States Pharmacopeia (USP) Reference Standard