Saltar al contenido
Merck

Regulation of Heart Rate in Drosophila via Fragile X Mental Retardation Protein.

PloS one (2015-11-17)
Stefanie Mares Novak, Archi Joardar, Carol C Gregorio, Daniela C Zarnescu
RESUMEN

RNA binding proteins play a pivotal role in post-transcriptional gene expression regulation, however little is understood about their role in cardiac function. The Fragile X (FraX) family of RNA binding proteins is most commonly studied in the context of neurological disorders, as mutations in Fragile X Mental Retardation 1 (FMR1) are the leading cause of inherited mental retardation. More recently, alterations in the levels of Fragile X Related 1 protein, FXR1, the predominant FraX member expressed in vertebrate striated muscle, have been linked to structural and functional defects in mice and zebrafish models. FraX proteins are established regulators of translation and are known to regulate specific targets in different tissues. To decipher the direct role of FraX proteins in the heart in vivo, we turned to Drosophila, which harbors a sole, functionally conserved and ubiquitously expressed FraX protein, dFmr1. Using classical loss of function alleles as well as muscle specific RNAi knockdown, we show that Drosophila FMRP, dFmr1, is required for proper heart rate during development. Functional analyses in the context of cardiac-specific dFmr1 knockdown by RNAi demonstrate that dFmr1 is required cell autonomously in cardiac cells for regulating heart rate. Interestingly, these functional defects are not accompanied by any obvious structural abnormalities, suggesting that dFmr1 may regulate a different repertoire of targets in Drosophila than in vertebrates. Taken together, our findings support the hypothesis that dFmr1 protein is essential for proper cardiac function and establish the fly as a new model for studying the role(s) of FraX proteins in the heart.

MATERIALES
Número de producto
Marca
Descripción del producto

Sigma-Aldrich
Glicerol, ACS reagent, ≥99.5%
Sigma-Aldrich
Glicerol, Molecular Biology, ≥99.0%
Sigma-Aldrich
Glicerol, ReagentPlus®, ≥99.0% (GC)
Sigma-Aldrich
Dodecilsulfatosódico, BioReagent, Molecular Biology, ≥98.5% (GC)
Sigma-Aldrich
Dodecilsulfatosódico, ≥99.0% (GC), dust-free pellets
Sigma-Aldrich
DL-Ditiotreitol solution, BioUltra, Molecular Biology, ~1 M in H2O
Sigma-Aldrich
Cloruro de sodio, Molecular Biology, DNase, RNase, and protease, none detected, ≥99% (titration)
Sigma-Aldrich
Urea, powder, BioReagent, Molecular Biology, suitable for cell culture
Sigma-Aldrich
Sodium chloride solution, 5 M in H2O, BioReagent, Molecular Biology
Sigma-Aldrich
Cloruro de sodio, BioXtra, ≥99.5% (AT)
Sigma-Aldrich
Cloruro de calcio solution, BioUltra, Molecular Biology, ~1 M in H2O
Sigma-Aldrich
Cloruro de sodio, BioReagent, suitable for cell culture, suitable for insect cell culture, suitable for plant cell culture, ≥99%
Sigma-Aldrich
Sodium chloride solution, 0.9% in water, BioXtra, suitable for cell culture
Sigma-Aldrich
Dodecilsulfatosódico, ACS reagent, ≥99.0%
Sigma-Aldrich
Sodium dodecyl sulfate solution, BioUltra, Molecular Biology, 10% in H2O
Supelco
DL-Ditiotreitol solution, 1 M in H2O
Sigma-Aldrich
Urea, ACS reagent, 99.0-100.5%
Sigma-Aldrich
Dodecilsulfatosódico, ReagentPlus®, ≥98.5% (GC)
Sigma-Aldrich
Glicerol, ≥99.5%
Sigma-Aldrich
Calcium chloride, anhydrous, BioReagent, suitable for insect cell culture, suitable for plant cell culture, ≥96.0%
Sigma-Aldrich
Glicerol solution, 83.5-89.5% (T)
Sigma-Aldrich
Sodium chloride solution, 5 M
Supelco
Urea, 8 M (after reconstitution with 16 mL high purity water)
Sigma-Aldrich
Dodecilsulfatosódico, BioUltra, Molecular Biology, ≥99.0% (GC)
Sigma-Aldrich
Glicerol, BioReagent, suitable for cell culture, suitable for insect cell culture, suitable for electrophoresis, ≥99% (GC)
Sigma-Aldrich
Sodium dodecyl sulfate solution, BioUltra, 20% in H2O
SAFC
Sodium chloride solution, 5 M
Sigma-Aldrich
Glicerol, BioUltra, Molecular Biology, anhydrous, ≥99.5% (GC)
Sigma-Aldrich
Urea solution, BioUltra, ~8 M in H2O
Sigma-Aldrich
Glicerol, BioXtra, ≥99% (GC)