Saltar al contenido
Merck

Meniscus is more susceptible than cartilage to catabolic and anti-anabolic effects of adipokines.

Osteoarthritis and cartilage (2015-04-29)
J F Nishimuta, M E Levenston
RESUMEN

This study compared the effects on cartilage and meniscus matrix catabolism and biosynthesis of several adipokines implicated in osteoarthritis (OA). Bovine cartilage and meniscus explants were cultured for 1 or 9 days in serum-free medium alone or with 0.02, 0.2, or 2 μg/ml of leptin, visfatin, adiponectin, or resistin. Media were supplemented with (3)H-proline or (35)S-sodium sulfate to evaluate protein and sulfated glycosaminoglycan (sGAG) accumulation on the last day of culture. Explants were assayed for radiolabel, sGAG, and DNA contents. Cultured media were assayed for sGAG, nitrite and lactate dehydrogenase. Cartilage tissue was minimally affected by adipokines, with only the highest resistin dose increasing sGAG release and nitrite production compared to controls. In sharp contrast, meniscus tissue was responsive to several adipokines, with elevated sGAG and nitrite release following treatment with resistin, leptin, or visfatin. Cartilage sGAG content was unaltered by adipokine treatment whereas meniscal sGAG content significantly decreased with resistin dosage. Protein ((3)H) incorporation was unaffected by adipokine treatment in both tissues. sGAG ((35)S) incorporation did not significantly vary with adipokine treatment in cartilage but was inhibited by treatment with leptin, visfatin, and resistin in meniscus. Our results indicate that meniscal tissue is more susceptible to adipokine-stimulated catabolism than is cartilage. Resistin had the strongest effect of the adipokines tested, inducing sGAG release in both tissues and depleting sGAG content in meniscus. These results suggest that increased adipokine levels due to obesity or joint injury may alter the mechanical integrity of the knee joint through biological pathways.

MATERIALES
Número de producto
Marca
Descripción del producto

Sigma-Aldrich
HEPES, ≥99.5% (titration)
Sigma-Aldrich
HEPES, BioPerformance Certified, ≥99.5% (titration), suitable for cell culture
Sigma-Aldrich
Ácido L-ascórbico, powder, suitable for cell culture, γ-irradiated
Sigma-Aldrich
Ácido L-ascórbico, BioXtra, ≥99.0%, crystalline
Sigma-Aldrich
Ácido L-ascórbico, suitable for cell culture, suitable for plant cell culture, ≥98%
Sigma-Aldrich
Ácido L-ascórbico, 99%
Sigma-Aldrich
N-(1-Naphthyl)ethylenediamine dihydrochloride, ACS reagent, >98%
Sigma-Aldrich
Ácido L-ascórbico, reagent grade, crystalline
Sigma-Aldrich
Ammonium acetate, Molecular Biology, ≥98%
Sigma-Aldrich
Sulfanilamide, ≥98%
Sigma-Aldrich
Ammonium acetate solution, Molecular Biology, 7.5 M
Sigma-Aldrich
N-(1-Naphthyl)ethylenediamine dihydrochloride, ≥98%
Sigma-Aldrich
HEPES buffer solution, 1 M in H2O
Sigma-Aldrich
Sodium nitrite, 99.999% trace metals basis
Sigma-Aldrich
Ácido L-ascórbico, ACS reagent, ≥99%
Sigma-Aldrich
HEPES, BioUltra, Molecular Biology, ≥99.5% (T)
Sigma-Aldrich
Ammonium acetate, 99.999% trace metals basis
Sigma-Aldrich
Ácido L-ascórbico, meets USP testing specifications
Sigma-Aldrich
Ácido L-ascórbico, reagent grade
Sigma-Aldrich
Ammonium acetate, reagent grade, ≥98%
Sigma-Aldrich
Ammonium acetate, BioXtra, ≥98%
Sigma-Aldrich
Selenous acid, 98%
Sigma-Aldrich
HEPES, BioXtra, suitable for mouse embryo cell culture, ≥99.5% (titration)
Sigma-Aldrich
1,9-Dimethyl-Methylene Blue zinc chloride double salt, Dye content 80 %
Sigma-Aldrich
HEPES, BioXtra, pH 5.0-6.5 (1 M in H2O), ≥99.5% (titration)
Sigma-Aldrich
Ácido L-ascórbico, puriss. p.a., ACS reagent, reag. ISO, Ph. Eur., 99.7-100.5% (oxidimetric)
Sigma-Aldrich
Ácido L-ascórbico, FCC, FG
Sigma-Aldrich
Ethanesulfonic acid, 95%
Sigma-Aldrich
Ácido L-ascórbico, BioUltra, ≥99.5% (RT)
Sigma-Aldrich
Sulfanilamide, puriss. p.a., ≥98% (calc. to the dried substance)