Saltar al contenido
Merck

Acute dermal toxicity and sensitization studies of novel nano-enhanced UV absorbers.

Journal of occupational health (2015-03-20)
Joanna Piasecka-Zelga, Piotr Zelga, Magdalena Górnicz, Paweł Strzelczyk, Jadwiga Sójka-Ledakowicz
RESUMEN

Many employees working outside are exposed to the harmful effects of UV radiation. A growing problem is also sensitization to textile materials and allergic reactions to active compounds. Groups of inorganic UV blockers with nanoparticles may provide superior properties over organic UV absorbers with relatively less potential of provoking dermatitis. To assess acute dermal irritation and sensitization of nano UV absorbers. Five UV absorbers with nano-sized particles (Z11, TiO2 - SiO2 [TDPK], TK44, TK11, A8G) and 2 vehicles (paste-based on 10% PEG, and dispersion with 1% HEC) were tested. Acute dermal irritation was tested using group of 3 rabbits for each absorber. The sensitization study was carried out on groups of 15 guinea pigs for each tested textile with a UV absorber showing an Ultraviolet Protection Factor (UPF)>40. This research was designed according to OECD Test Guideline No. 404 and 406, and 21 rabbits and 60 guinea pigs were used in the study. In acute dermal irritation, Z11 and A8G modifiers and the analyzed paste gave results of 0.047 to 0.33 which classifies them as barely perceptible irritants, whereas the other analyzed modifiers and dispersion gave results of 0.00 and were classified as nonirritating. Only the textile with TK 11 did not have UPF>40. The analyzed barrier materials were classified as nonsenitizers (TDPK, A8G) or mild sensitizers (TK44, Z11). None of the analyzed materials or modifiers induced major skin reactions in animals. Therefore, they present low risk of provoking skin reactions in humans.

MATERIALES
Número de producto
Marca
Descripción del producto

Sigma-Aldrich
Dodecilsulfatosódico, BioReagent, Molecular Biology, ≥98.5% (GC)
Sigma-Aldrich
Dodecilsulfatosódico, ≥99.0% (GC), dust-free pellets
Sigma-Aldrich
Dodecilsulfatosódico, ACS reagent, ≥99.0%
Sigma-Aldrich
Sodium dodecyl sulfate solution, BioUltra, Molecular Biology, 10% in H2O
Sigma-Aldrich
Dodecilsulfatosódico, ReagentPlus®, ≥98.5% (GC)
Sigma-Aldrich
Óxido de titanio (IV), nanopowder, 21 nm primary particle size (TEM), ≥99.5% trace metals basis
Sigma-Aldrich
Dodecilsulfatosódico, BioUltra, Molecular Biology, ≥99.0% (GC)
Sigma-Aldrich
Sodium dodecyl sulfate solution, BioUltra, 20% in H2O
Sigma-Aldrich
Titanium(IV) oxide, anatase, nanopowder, <25 nm particle size, 99.7% trace metals basis
Supelco
Dodecilsulfatosódico, dust-free pellets, suitable for electrophoresis, Molecular Biology, ≥99.0% (GC)
Sigma-Aldrich
Zimtaldehyd, natural, ≥95%, FG
Sigma-Aldrich
Titanium(IV) oxide, anatase, powder, 99.8% trace metals basis
Sigma-Aldrich
Titanium(IV) oxide, anatase, powder, −325 mesh, ≥99% trace metals basis
Sigma-Aldrich
trans-Cinnamaldehyde, 97%
Sigma-Aldrich
Titanium(IV) oxide, rutile, powder, <5 μm, ≥99.9% trace metals basis
Sigma-Aldrich
Dodecilsulfatosódico, BioXtra, ≥99.0% (GC)
Sigma-Aldrich
Titanium(IV) oxide, rutile, nanopowder, <100 nm particle size, 99.5% trace metals basis
Sigma-Aldrich
Dodecilsulfatosódico, ≥98.0% (GC)
Sigma-Aldrich
Titanium(IV) oxide, mixture of rutile and anatase, nanopowder, <100 nm particle size (BET), 99.5% trace metals basis
Sigma-Aldrich
Dodecilsulfatosódico, 92.5-100.5% based on total alkyl sulfate content basis
Sigma-Aldrich
trans-Cinnamaldehyde, ≥99%
Sigma-Aldrich
trans-Cinnamaldehyde, FCC, FG
Sigma-Aldrich
Dodecilsulfatosódico, ≥90% ((Assay))
Sigma-Aldrich
Dodecilsulfatosódico, tested according to NF, mixture of sodium alkyl sulfates consisting mainly of sodium dodecyl sulfate
Sigma-Aldrich
Titanium(IV) oxide, mixture of rutile and anatase, nanoparticles, <150 nm particle size (volume distribution, DLS), dispersion, 40 wt. % in H2O, 99.5% trace metals basis
Sigma-Aldrich
Titanium(IV) oxide, rutile, ≥99.98% trace metals basis
Sigma-Aldrich
Titanium(IV) oxide, rutile, 99.995% trace metals basis
Sigma-Aldrich
Óxido de titanio (IV), contains 1% Mn as dopant, nanopowder, <100 nm particle size (BET), ≥97%
Sigma-Aldrich
Titanium(IV) oxide, rutile, <001>, (single crystal substrate), ≥99.9% trace metals basis, L × W × thickness 10 mm × 10 mm × 0.5 mm
Sigma-Aldrich
Óxido de titanio (IV), nanowires, diam. × L ~10 nm × 10 μm