コンテンツへスキップ
Merck
  • A role for the arginine methylation of Rad9 in checkpoint control and cellular sensitivity to DNA damage.

A role for the arginine methylation of Rad9 in checkpoint control and cellular sensitivity to DNA damage.

Nucleic acids research (2011-02-16)
Wei He, Xiaoyan Ma, Xiao Yang, Yun Zhao, Junkang Qiu, Haiying Hang
要旨

The genome stability is maintained by coordinated action of DNA repairs and checkpoints, which delay progression through the cell cycle in response to DNA damage. Rad9 is conserved from yeast to human and functions in cell cycle checkpoint controls. Here, a regulatory mechanism for Rad9 function is reported. In this study Rad9 has been found to interact with and be methylated by protein arginine methyltransferase 5 (PRMT5). Arginine methylation of Rad9 plays a critical role in S/M and G2/M cell cycle checkpoints. The activation of the Rad9 downstream checkpoint effector Chk1 is impaired in cells only expressing a mutant Rad9 that cannot be methylated. Additionally, Rad9 methylation is also required for cellular resistance to DNA damaging stresses. In summary, we uncovered that arginine methylation is important for regulation of Rad9 function, and thus is a major element for maintaining genome integrity.

材料
製品番号
ブランド
製品内容

Sigma-Aldrich
モノクローナル抗FLAG® M2抗体 マウス宿主抗体, 1 mg/mL, clone M2, affinity isolated antibody, buffered aqueous solution (50% glycerol, 10 mM sodium phosphate, and 150 mM NaCl, pH 7.4)
Millipore
抗FLAG® ウサギ宿主抗体, affinity isolated antibody, buffered aqueous solution