コンテンツへスキップ
Merck
  • Stable isotope studies reveal pathways for the incorporation of non-essential amino acids in Acyrthosiphon pisum (pea aphids).

Stable isotope studies reveal pathways for the incorporation of non-essential amino acids in Acyrthosiphon pisum (pea aphids).

The Journal of experimental biology (2015-12-04)
Meena Haribal, Georg Jander
要旨

Plant roots incorporate inorganic nitrogen into the amino acids glutamine, glutamic acid, asparagine and aspartic acid, which together serve as the primary metabolites of nitrogen transport to other tissues. Given the preponderance of these four amino acids, phloem sap is a nutritionally unbalanced diet for phloem-feeding insects. Therefore, aphids and other phloem feeders typically rely on microbial symbionts for the synthesis of essential amino acids. To investigate the metabolism of the four main transport amino acids by the pea aphid (Acyrthosiphon pisum), and its Buchnera aphidicola endosymbionts, aphids were fed defined diets with stable isotope-labeled glutamine, glutamic acid, asparagine or aspartic acid (U-(13)C, U-(15)N; U-(15)N; α-(15)N; or γ-(15)N). The metabolic fate of the dietary (15)N and (13)C was traced using gas chromatography-mass spectrometry (GC-MS). Nitrogen was the major contributor to the observed amino acid isotopomers with one additional unit mass (M+1). However, there was differential incorporation, with the amine nitrogen of asparagine being incorporated into other amino acids more efficiently than the amide nitrogen. Higher isotopomers (M+2, M+3 and M+4) indicated the incorporation of varying numbers of (13)C atoms into essential amino acids. GC-MS assays also showed that, even with an excess of dietary labeled glutamine, glutamic acid, asparagine or aspartic acid, the overall content of these amino acids in aphid bodies was mostly the product of catabolism of dietary amino acids and subsequent re-synthesis within the aphids. Thus, these predominant dietary amino acids are not passed directly to Buchnera endosymbionts for synthesis of essential amino acids, but are rather are produced de novo, most likely by endogenous aphid enzymes.

材料
製品番号
ブランド
製品内容

Sigma-Aldrich
塩酸, ACS reagent, 37%
Sigma-Aldrich
塩酸, ACS reagent, 37%
Sigma-Aldrich
スクロース, Molecular Biology, ≥99.5% (GC)
Sigma-Aldrich
塩化水素 溶液, 4.0 M in dioxane
Sigma-Aldrich
スクロース, ≥99.5% (GC)
Sigma-Aldrich
スクロース, ≥99.5% (GC), BioXtra
Sigma-Aldrich
スクロース, BioUltra, Molecular Biology, ≥99.5% (HPLC)
Sigma-Aldrich
塩酸 溶液, 1.0 N, BioReagent, suitable for cell culture
Sigma-Aldrich
塩酸, meets analytical specification of Ph. Eur., BP, NF, fuming, 36.5-38%
Sigma-Aldrich
塩酸, 37 wt. % in H2O, 99.999% trace metals basis
Sigma-Aldrich
塩化水素 溶液, 2.0 M in diethyl ether
Sigma-Aldrich
塩酸, puriss. p.a., ACS reagent, reag. ISO, reag. Ph. Eur., fuming, ≥37%, APHA: ≤10
Sigma-Aldrich
無水酢酸, ReagentPlus®, ≥99%
Sigma-Aldrich
塩酸, 36.5-38.0%, BioReagent, Molecular Biology
Sigma-Aldrich
L-イソロイシン, from non-animal source, meets EP, JP, USP testing specifications, suitable for cell culture, 98.5-101.0%
Sigma-Aldrich
スクロース, ≥99.5% (GC), BioReagent, suitable for cell culture, suitable for insect cell culture
Supelco
塩酸 溶液, volumetric, 0.1 M HCl (0.1N), endotoxin free
Supelco
N-メチル-N-(トリメチルシリル)トリフルオロアセトアミド, synthesis grade
Sigma-Aldrich
スクロース, ACS reagent
Sigma-Aldrich
無水酢酸, puriss. p.a., ACS reagent, reag. ISO, reag. Ph. Eur., ≥99% (GC)
Sigma-Aldrich
無水酢酸, ACS reagent, ≥98.0%
Supelco
N-メチル-N-(トリメチルシリル)トリフルオロアセトアミド, BioReagent, for silylations, LiChropur
Sigma-Aldrich
塩酸, SAJ first grade, 35.0-37.0%
Sigma-Aldrich
無水酢酸, 99.5%
Sigma-Aldrich
塩化水素 溶液, 1.0 M in diethyl ether
Sigma-Aldrich
塩酸, JIS special grade, 35.0-37.0%
Sigma-Aldrich
塩酸 溶液, 1 M
Sigma-Aldrich
塩酸 溶液, ~6 M in H2O, for amino acid analysis
Sigma-Aldrich
L-イソロイシン, reagent grade, ≥98% (HPLC)
Sigma-Aldrich
塩酸 溶液, 6 M