Saltar al contenido
MilliporeSigma

High-frequency and -field EPR and FDMRS study of the [Fe(H2O)6]2+ ion in ferrous fluorosilicate.

Journal of magnetic resonance (San Diego, Calif. : 1997) (2011-10-22)
J Krzystek, D Smirnov, Christoph Schlegel, Joris van Slageren, Joshua Telser, Andrew Ozarowski
RESUMEN

The complex [Fe(H2O)6]SiF6 is one of the most stable and best characterized high-spin Fe(II) salts and as such, is a paradigm for the study of this important transition metal ion. We describe high-frequency and -field electron paramagnetic resonance studies of both pure [Fe(H2O)6]SiF6 and [Zn(H2O)6]SiF6 doped with 8% of Fe(II). In addition, frequency domain magnetic resonance spectroscopy was applied to these samples. High signal-to-noise, high resolution spectra were recorded which allowed an accurate determination of spin Hamiltonian parameters for Fe(II) in each of these two, related, environments. For pure [Fe(H2O)6]SiF6, the following parameters were obtained: D=+11.95(1) cm(-1), E=0.658(4) cm(-1), g=[2.099(4),2.151(5),1.997(3)], along with fourth-order zero-field splitting parameters: B4(0)=17(1)×10(-4) cm(-1) and B4(4)=18(4)×10(-4) cm(-1), which are rarely obtainable by any technique. For the doped complex, D=+13.42(1) cm(-1), E=0.05(1) cm(-1), g=[2.25(1),2.22(1),2.23(1)]. These parameters are in good agreement with those obtained using other techniques. Ligand-field theory was used to analyze the electronic absorption data for [Fe(H2O)6]SiF6 and suggests that the ground state is 5A1, which allows successful use of a spin Hamiltonian model. Density functional theory and unrestricted Hartree-Fock calculations were performed which, in the case of latter, reproduced the spin Hamiltonian parameters very well for the doped complex.

MATERIALES
Número de producto
Marca
Descripción del producto

Supelco
Potassium hexafluorosilicate, ≥99.0% (T)
En este momento no podemos mostrarle ni los precios ni la disponibilidad