Saltar al contenido
MilliporeSigma

Acceleration of reaction in charged microdroplets.

Quarterly reviews of biophysics (2015-11-06)
Jae Kyoo Lee, Shibdas Banerjee, Hong Gil Nam, Richard N Zare
RESUMEN

Using high-resolution mass spectrometry, we have studied the synthesis of isoquinoline in a charged electrospray droplet and the complexation between cytochrome c and maltose in a fused droplet to investigate the feasibility of droplets to drive reactions (both covalent and noncovalent interactions) at a faster rate than that observed in conventional bulk solution. In both the cases we found marked acceleration of reaction, by a factor of a million or more in the former and a factor of a thousand or more in the latter. We believe that carrying out reactions in microdroplets (about 1-15 μm in diameter corresponding to 0·5 pl - 2 nl) is a general method for increasing reaction rates. The mechanism is not presently established but droplet evaporation and droplet confinement of reagents appear to be two important factors among others. In the case of fused water droplets, evaporation has been shown to be almost negligible during the flight time from where droplet fusion occurs and the droplets enter the heated capillary inlet of the mass spectrometer. This suggests that (1) evaporation is not responsible for the acceleration process in aqueous droplet fusion and (2) the droplet-air interface may play a significant role in accelerating the reaction. We argue that this 'microdroplet chemistry' could be a remarkable alternative to accelerate slow and difficult reactions, and in conjunction with mass spectrometry, it may provide a new arena to study chemical and biochemical reactions in a confined environment.

MATERIALES
Número de producto
Marca
Descripción del producto

Sigma-Aldrich
Metanol, ACS reagent, ≥99.8%
Sigma-Aldrich
N,N-Dimetilformamida, ACS reagent, ≥99.8%
Sigma-Aldrich
N,N-Dimetilformamida, anhydrous, 99.8%
Sigma-Aldrich
Acetonitrilo, ACS reagent, ≥99.5%
Sigma-Aldrich
Acetonitrilo, anhydrous, 99.8%
Sigma-Aldrich
Metanol, anhydrous, 99.8%
Sigma-Aldrich
Metanol, Laboratory Reagent, ≥99.6%
Sigma-Aldrich
N,N-Dimetilformamida, puriss. p.a., ACS reagent, reag. Ph. Eur., ≥99.8% (GC)
Sigma-Aldrich
Metanol, puriss. p.a., ACS reagent, reag. ISO, reag. Ph. Eur., ≥99.8% (GC)
Sigma-Aldrich
N,N-Dimetilformamida, ReagentPlus®, ≥99%
Sigma-Aldrich
Metanol, ACS spectrophotometric grade, ≥99.9%
Sigma-Aldrich
Metanol, ACS reagent, ≥99.8%
Sigma-Aldrich
N,N-Dimetilformamida, Molecular Biology, ≥99%
Sigma-Aldrich
Benzaldehyde, ReagentPlus®, ≥99%
Sigma-Aldrich
Benzaldehyde, purified by redistillation, ≥99.5%
Sigma-Aldrich
Metanol, Absolute - Acetone free
Sigma-Aldrich
Metanol, BioReagent, ≥99.93%
Sigma-Aldrich
Metanol, JIS special grade, ≥99.8%
Sigma-Aldrich
N,N-Dimetilformamida, biotech. grade, ≥99.9%
Sigma-Aldrich
Acetonitrilo, HPLC Plus, ≥99.9%, poly-coated bottles
Sigma-Aldrich
Acetonitrilo, biotech. grade, ≥99.93%
Sigma-Aldrich
Acetonitrilo, electronic grade, 99.999% trace metals basis
Sigma-Aldrich
Metanol, ACS reagent, ≥99.8%
Sigma-Aldrich
Acetonitrilo solution, contains 0.1 % (v/v) formic acid, suitable for HPLC
Sigma-Aldrich
Benzaldehyde, ≥98%, FG, FCC
Sigma-Aldrich
Metanol, SAJ first grade, ≥99.5%
Sigma-Aldrich
N,N-Dimetilformamida, suitable for HPLC, ≥99.9%
Sigma-Aldrich
Acetonitrilo, suitable for DNA synthesis, ≥99.9% (GC)
Sigma-Aldrich
Acetonitrilo solution, contains 0.1 % (v/v) trifluoroacetic acid, suitable for HPLC
Sigma-Aldrich
N,N-Dimetilformamida, SAJ first grade, ≥99.0%