Saltar al contenido
Merck

Intracellular generation of ROS by 3,5-dimethylaminophenol: persistence, cellular response, and impact of molecular toxicity.

Toxicological sciences : an official journal of the Society of Toxicology (2014-06-29)
Ming-Wei Chao, Pinar Erkekoglu, Chia-Yi Tseng, Wenjie Ye, Laura J Trudel, Paul L Skipper, Steven R Tannenbaum, Gerald N Wogan
RESUMEN

Epidemiological studies have demonstrated extensive human exposure to the monocyclic aromatic amines, particularly to 3,5-dimethylaniline, and found an association between exposure to these compounds and risk for bladder cancer. Little is known about molecular mechanisms that might lead to the observed risk. We previously suggested that the hydroxylated 3,5-dimethylaniline metabolite, 3,5-dimethylaminophenol (3,5-DMAP), played a central role in effecting genetic change through the generation of reactive oxygen species (ROS) in a redox cycle with 3,5-dimethylquinoneimine. Experiments here characterize ROS generation by 3,5-DMAP exposure in nucleotide repair-proficient and -deficient Chinese hamster ovary cells as a function of time. Besides, various cellular responses discussed herein indicate that ROS production is the principal cause of cytotoxicity. Fluorescence microscopy of cells exposed to 3,5-DMAP confirmed that ROS production occurs in the nuclear compartment, as suggested by a previous study demonstrating covalent linkage between 3,5-DMAP and histones. 3,5-DMAP was also compared with 3,5-dimethylhydroquinone to determine whether substitution of one of the phenolic hydroxyl groups by an amino group had a significant effect on some of the investigated parameters. The comparatively much longer duration of observable ROS produced by 3,5-DMAP (7 vs. 1 day) provides further evidence that 3,5-DMAP becomes embedded in the cellular matrix in a form capable of continued redox cycling. 3,5-DMAP also induced dose-dependent increase of H2O2 and ·OH, which were determined as the major free radicals contributing to the cytotoxicity and apoptosis mediated via caspase-3 activation. Overall, this study provides insight into the progression of alkylaniline-induced toxicity.

MATERIALES
Número de producto
Marca
Descripción del producto

Sigma-Aldrich
Dimetilsulfóxido, Hybri-Max, sterile-filtered, BioReagent, suitable for hybridoma, ≥99.7%
Sigma-Aldrich
Dimetilsulfóxido, ACS reagent, ≥99.9%
Sigma-Aldrich
Dimetilsulfóxido, Molecular Biology
Sigma-Aldrich
Dimetilsulfóxido, suitable for HPLC, ≥99.7%
Sigma-Aldrich
Dimetilsulfóxido, sterile-filtered, BioPerformance Certified, meets EP, USP testing specifications, suitable for hybridoma
Sigma-Aldrich
Dimetilsulfóxido, ReagentPlus®, ≥99.5%
Sigma-Aldrich
Dimetilsulfóxido, anhydrous, ≥99.9%
Sigma-Aldrich
Dimetilsulfóxido, ≥99.5% (GC), suitable for plant cell culture
Sigma-Aldrich
Dimetilsulfóxido, puriss. p.a., ACS reagent, ≥99.9% (GC)
Sigma-Aldrich
Ácido L-ascórbico, powder, suitable for cell culture, γ-irradiated
Sigma-Aldrich
Yoduro de propidio, ≥94.0% (HPLC)
Sigma-Aldrich
Ácido L-ascórbico, BioXtra, ≥99.0%, crystalline
Sigma-Aldrich
Ácido L-ascórbico, suitable for cell culture, suitable for plant cell culture, ≥98%
Sigma-Aldrich
Medio esencial mínimo Eagle, Alpha Modification, with sodium bicarbonate, without L-glutamine, ribonucleosides and deoxyribonucleosides, liquid, sterile-filtered, suitable for cell culture
Sigma-Aldrich
Ácido L-ascórbico, 99%
Sigma-Aldrich
Ácido L-ascórbico, reagent grade, crystalline
Supelco
Ácido L-ascórbico, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
Dimetilsulfóxido, BioUltra, Molecular Biology, ≥99.5% (GC)
Sigma-Aldrich
Ácido úrico, ≥99%, crystalline
USP
Ácido L-ascórbico, United States Pharmacopeia (USP) Reference Standard
Sigma-Aldrich
2,4-Dinitrofenilhidracina, reagent grade, 97%
Sigma-Aldrich
Sodium orthovanadate, ≥90% (titration)
Sigma-Aldrich
Dimetilsulfóxido, meets EP testing specifications, meets USP testing specifications
Sigma-Aldrich
Ácido L-ascórbico, ACS reagent, ≥99%
Supelco
Ácido L-ascórbico, analytical standard
Sigma-Aldrich
Propidium iodide solution
Sigma-Aldrich
Sodium orthovanadate, 99.98% trace metals basis
Sigma-Aldrich
Ácido L-ascórbico, meets USP testing specifications
Sigma-Aldrich
Ácido sulfanílico, ACS reagent, 99%
Sigma-Aldrich
Dimetilsulfóxido, PCR Reagent