Direkt zum Inhalt
Merck

Effect of interlayer spacing on the electrochemical properties of alkali titanate nanotubes.

Journal of nanoscience and nanotechnology (2013-07-19)
Minyong Eom, Junghoon Kim, Yongsub Yoon, Dongwook Shin
ZUSAMMENFASSUNG

Multilayered titanate nanotubes (TNTs) has been considered as a candidate for lithium ion battery anode material. However, it has a problem of high irreversible capacity due to trapped lithium ions in the interlayer space. To solve this problem, an attempt to enlarge the interlayer spacing has been made in this work to improve intercalation characteristics of TNTs. Monoatomic ions in hydrothermally heat-treated TNTs were substituted to one of Li, Na and K alkali ions via ion-exchange process. The TNTs (200) interlayer spacing peak in XRD patterns showed a shift to a lower angle, indicating an enlarged interlayer spacing of TNTs. The Li-, Na- and K-ion exchanged TNTs exhibited an initial capacity of 214, 230 and 248 mA h/g at 0.1 C, respectively, in the TNTs // LiPF6 electrolyte // Li metal coin type cell test. It was found that the enlarged interlayer spacing resulted in an increment in the specific capacity and rate capability. This increase was attributed to both the enhanced lithium ion diffusion and the increased number of lithium ion intercalation sites in the TNTs interlayers.

MATERIALIEN
Produktnummer
Marke
Produktbeschreibung

Sigma-Aldrich
Titan(IV)-oxid, nanopowder, 21 nm primary particle size (TEM), ≥99.5% trace metals basis
Sigma-Aldrich
Titan(IV)-oxid, Anatase, nanopowder, <25 nm particle size, 99.7% trace metals basis
Sigma-Aldrich
Titan(IV)-oxid, Anatase, powder, 99.8% trace metals basis
Sigma-Aldrich
Titan(IV)-oxid, ReagentPlus®, ≥99%
Sigma-Aldrich
Titan(IV)-oxid, Anatase, powder, −325 mesh, ≥99% trace metals basis
Sigma-Aldrich
Titan(IV)-oxid, Rutil, powder, <5 μm, ≥99.9% trace metals basis
Sigma-Aldrich
Lithium, granular, 99% trace metals basis
Sigma-Aldrich
Titan(IV)-oxid, Rutil, nanopowder, <100 nm particle size, 99.5% trace metals basis
Sigma-Aldrich
Titan(IV)-oxid, Mischung aus Rutil und Anatas, nanopowder, <100 nm particle size (BET), 99.5% trace metals basis
Sigma-Aldrich
Titan, foil, thickness 0.127 mm, 99.7% trace metals basis
Sigma-Aldrich
Lithium, ribbon, thickness × W 0.38 mm × 23 mm, 99.9% trace metals basis
Sigma-Aldrich
Titan, foil, thickness 0.25 mm, 99.7% trace metals basis
Sigma-Aldrich
Lithium, granular, 4-10 mesh particle size, high sodium, 99% (metals basis)
Sigma-Aldrich
Titan, powder, <45 μm avg. part. size, 99.98% trace metals basis
Sigma-Aldrich
Titan, powder, −100 mesh, 99.7% trace metals basis
Sigma-Aldrich
Lithium, rod, diam. 12.7 mm, 99.9% trace metals basis
Sigma-Aldrich
Titan(IV)-oxid, Mischung aus Rutil und Anatas, nanoparticles, <150 nm particle size (volume distribution, DLS), dispersion, 40 wt. % in H2O, 99.5% trace metals basis
Sigma-Aldrich
Lithium, ribbon, thickness × W 0.75 mm × 19 mm, 99.9% trace metals basis
Sigma-Aldrich
Titan(IV)-oxid, Rutil, ≥99.98% trace metals basis
Sigma-Aldrich
Lithium, wire, diam. 3.2 mm, in mineral oil, ≥98%
Sigma-Aldrich
Titan(IV)-oxid, Rutil, 99.995% trace metals basis
Sigma-Aldrich
Titan(IV)-oxid, contains 1% Mn as dopant, nanopowder, <100 nm particle size (BET), ≥97%
Sigma-Aldrich
Titan, wire, diam. 0.25 mm, 99.7% trace metals basis
Sigma-Aldrich
Titan, sponge, 1-20 mm, 99.5% trace metals basis
Sigma-Aldrich
Lithium, ribbon, thickness × W 0.75 mm × 45 mm, 99.9% trace metals basis
Sigma-Aldrich
Lithium, wire (in mineral oil), diam. 3.2 mm, 99.9% trace metals basis
Sigma-Aldrich
Titan, sputtering target, diam. × thickness 2.00 in. × 0.25 in., 99.995% trace metals basis
Sigma-Aldrich
Lithium, ribbon, thickness × W 1.5 mm × 100 mm, 99.9% trace metals basis
Sigma-Aldrich
Titan, foil, thickness 0.025 mm, 99.98% trace metals basis
Sigma-Aldrich
Titan, ≤10 mm, ≥99.99% trace metals basis (purity exclusive of Na and K content)