Direkt zum Inhalt
Merck
  • Isomer-specific effects of conjugated linoleic acid on HDL functionality associated with reverse cholesterol transport.

Isomer-specific effects of conjugated linoleic acid on HDL functionality associated with reverse cholesterol transport.

The Journal of nutritional biochemistry (2014-12-04)
Nathalie Nicod, Robert S Parker, Elena Giordano, Virginia Maestro, Alberto Davalos, Francesco Visioli
ZUSAMMENFASSUNG

High-density lipoproteins (HDLs) are atheroprotective because of their role in reverse cholesterol transport. The intestine is involved in this process because it synthesizes HDL, removes cholesterol from plasma and excretes it into the lumen. We investigated the role of selected dietary fatty acids on intestinal cholesterol uptake and HDL functionality. Caco-2 monolayers grown on Transwells were supplemented with either palmitic, palmitoleic, oleic, linoleic, docosahexaenoic, eicosapentaenoic, arachidonic or conjugated linoleic acids (CLAs): c9,t11-CLA; t9,t11-CLA; c10,t12-CLA. Cells synthesized HDL in the basolateral compartment for 24 h in the absence or presence of an antibody to SR-BI (aSR-BI), which inhibits its interaction with HDL. Free cholesterol (FC) accumulated to a greater extent in the presence than in the absence of aSR-BI, indicating net uptake of FC by SR-BI. Uptake's efficiency was significantly decreased when cells were treated with c9,t11-CLA relative to the other fatty acids. These differences were associated with lower HDL functionality, since neither SR-BI protein expression nor expression and alternative splicing of other genes involved lipid metabolism were affected. Only INSIG2 expression was decreased, with no increase of its target genes. Increasing pre-β-HDL synthesis, by inducing ABCA1 and adding APOA1, resulted in reduced uptake of FC by SR-BI after c9,t11-CLA treatment, indicating reduced functionality of pre-β-HDL. Conversely, treatment with c9,t11-CLA resulted in a greater uptake of FC and esterified cholesterol from mature HDL. Therefore, Caco-2 monolayers administered c9,t11-CLA produced a nonfunctional pre-β-HDL but took up cholesterol more efficiently via SR-BI from mature HDL.

MATERIALIEN
Produktnummer
Marke
Produktbeschreibung

Sigma-Aldrich
Oleinsäure, technical grade, 90%
Sigma-Aldrich
Palmitinsäure, ≥99%
Sigma-Aldrich
α-Linoleic acid, ≥98%
Sigma-Aldrich
Ethylendiamintetraessigsäure, 99.4-100.6%, powder
Sigma-Aldrich
Oleinsäure, ≥99% (GC)
Sigma-Aldrich
Taurocholsäure Natriumsalz Hydrat, ≥95% (HPLC)
Sigma-Aldrich
Ethylendiamintetraessigsäure, anhydrous, crystalline, BioReagent, suitable for cell culture
Sigma-Aldrich
Ethylendiamintetraessigsäure -Lösung, 0.02% in DPBS (0.5 mM), sterile-filtered, BioReagent, suitable for cell culture
Sigma-Aldrich
Oleinsäure, BioReagent, suitable for cell culture
Sigma-Aldrich
Ethylendiamintetraessigsäure Dinatriumsalz -Lösung, BioUltra, pH 8.0, ~0.5 M in H2O
Sigma-Aldrich
Natriumtaurocholat Hydrat, ≥97.0% (TLC)
Sigma-Aldrich
(L)-Dehydroascorbinsäure
Sigma-Aldrich
Ethylendiamintetraessigsäure, 99.995% trace metals basis
Sigma-Aldrich
Ethylendiamintetraessigsäure, BioUltra, anhydrous, ≥99% (titration)
Sigma-Aldrich
Linolsäure, liquid, BioReagent, suitable for cell culture
Sigma-Aldrich
Palmitoleinsäure, ≥98.5% (GC), liquid
Sigma-Aldrich
Palmitinsäure, BioXtra, ≥99%
Sigma-Aldrich
Arachidonsäure, >95.0% (GC)
Sigma-Aldrich
Oleinsäure, natural, FCC
Sigma-Aldrich
Oleinsäure, meets analytical specification of Ph, Eur., 65.0-88.0% (GC)
Supelco
Palmitinsäure, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
Arachidonsäure, from non-animal source, ≥98.5% (GC)
Sigma-Aldrich
Palmitinsäure, ≥98%, FCC, FG
Sigma-Aldrich
Ethylendiamintetraessigsäure, purified grade, ≥98.5%, powder
Sigma-Aldrich
Ergosterol, ≥75%
USP
Palmitinsäure, United States Pharmacopeia (USP) Reference Standard
Sigma-Aldrich
Linolsäure, technical, 58-74% (GC)
Supelco
Oleinsäure, analytical standard
Supelco
Linolsäure, analytical standard
Supelco
Palmitinsäure, analytical standard