Direkt zum Inhalt
Merck
  • Liquid chromatography tandem mass spectrometry quantitation of intracellular concentrations of ganciclovir and its phosphorylated forms.

Liquid chromatography tandem mass spectrometry quantitation of intracellular concentrations of ganciclovir and its phosphorylated forms.

Analytical and bioanalytical chemistry (2015-02-24)
Pierre-André Billat, François-Ludovic Sauvage, Nicolas Picard, Naїma Tafzi, Sophie Alain, Marie Essig, Pierre Marquet, Franck Saint-Marcoux
ZUSAMMENFASSUNG

Ganciclovir (GCV) is prescribed for cytomegalovirus infection which is a major issue in immunodepressed patients. It is however characterized by hematological toxicity. A better understanding of GCV concentration-effects relationships implies the measurement of intracellular forms. The objective of this study was to develop a method to measure GCV and its derivatives in cells. A four-stage procedure was developed with the following strategy: (1) to separate into different fractions the different intracellular forms of GCV (GCV itself and its phosphorylated forms) by solid-phase extraction (SPE) from blood cells, (2) to dephosphorylate the different phosphorylated forms into GCV, (3) to perform a second SPE to desalt samples and concentrate GCV, and (4) to measure GCV concentrations in the different extracts using a triple-quadrupole, linear ion trap mass spectrometer. Finally, the procedure was tested in 17 patients receiving GCV. From lysed cells, the different forms of GCV were fractionated, the phosphorylated forms were eluted with different KCl solutions, and the obtained fractions were treated with acid phosphatase to transform the phosphorylated metabolites back into GCV. The method was validated from 5 to 500 μg L(-1) with a limit of detection of 1 μg L(-1). The whole procedure was validated according to the US Food and Drug Administration guidelines and successfully applied in 17 patients receiving GCV. The method liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) allowing the measurement of GCV and its phosphorylated forms in blood cells was developed and can be used in developing clinical studies to explore the role of these biomarkers in the event of toxicity.

MATERIALIEN
Produktnummer
Marke
Produktbeschreibung

Sigma-Aldrich
Acetonitril, suitable for HPLC, gradient grade, ≥99.9%
Sigma-Aldrich
Methanol, suitable for HPLC, ≥99.9%
Sigma-Aldrich
Methanol, ACS reagent, ≥99.8%
Sigma-Aldrich
Essigsäure, glacial, ACS reagent, ≥99.7%
Sigma-Aldrich
Acetonitril, HPLC Plus, ≥99.9%
Sigma-Aldrich
Kaliumchlorid, ACS reagent, 99.0-100.5%
Sigma-Aldrich
Essigsäure, glacial, ReagentPlus®, ≥99%
Sigma-Aldrich
Ameisensäure, reagent grade, ≥95%
Sigma-Aldrich
Methanol, HPLC Plus, ≥99.9%
Sigma-Aldrich
Acetonitril, ACS reagent, ≥99.5%
Sigma-Aldrich
Ameisensäure, ACS reagent, ≥96%
Sigma-Aldrich
Acetonitril, anhydrous, 99.8%
Supelco
Ammoniumformat, eluent additive for LC-MS, LiChropur, ≥99.0%
Sigma-Aldrich
Methanol, anhydrous, 99.8%
Sigma-Aldrich
Ammoniak -Lösung, 7 N in methanol
Sigma-Aldrich
Ammoniumformat, reagent grade, 97%
Sigma-Aldrich
Kaliumchlorid, ReagentPlus®, ≥99.0%
Sigma-Aldrich
Acetonitril, suitable for HPLC, gradient grade, ≥99.9%
Sigma-Aldrich
Essigsäure, glacial, ≥99.99% trace metals basis
Sigma-Aldrich
Essigsäure -Lösung, suitable for HPLC
Sigma-Aldrich
Kaliumchlorid, Molecular Biology, ≥99.0%
Sigma-Aldrich
Methanol, Laboratory Reagent, ≥99.6%
Sigma-Aldrich
Methanol, suitable for HPLC, gradient grade, suitable as ACS-grade LC reagent, ≥99.9%
Sigma-Aldrich
Kaliumchlorid, powder, BioReagent, suitable for cell culture, suitable for insect cell culture, ≥99.0%
Sigma-Aldrich
Ammoniumformat, ≥99.995% trace metals basis
Sigma-Aldrich
Kaliumchlorid, puriss., meets analytical specification of Ph. Eur., BP, USP, FCC, E508, 99-100.5% (AT), ≤0.0001% Al
Sigma-Aldrich
Ameisensäure, ACS reagent, ≥88%
Sigma-Aldrich
Methanol, ACS spectrophotometric grade, ≥99.9%
Sigma-Aldrich
Kaliumchlorid, puriss. p.a., ≥99.5% (AT)
Sigma-Aldrich
Methanol, ACS reagent, ≥99.8%