Direkt zum Inhalt
Merck
  • Preparation and in vitro-in vivo evaluation of ofloxacin loaded ophthalmic nano structured lipid carriers modified with chitosan oligosaccharide lactate for the treatment of bacterial keratitis.

Preparation and in vitro-in vivo evaluation of ofloxacin loaded ophthalmic nano structured lipid carriers modified with chitosan oligosaccharide lactate for the treatment of bacterial keratitis.

European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences (2014-08-12)
Neslihan Ustündağ-Okur, Evren Homan Gökçe, Duygu İnci Bozbıyık, Sait Eğrilmez, Ozgen Ozer, Gökhan Ertan
ZUSAMMENFASSUNG

The objective of this study was to explore the potential of the nanostructured lipid carriers (NLCs) modified with chitosan oligosaccharide lactate (COL) for topical ocular application. Ofloxacin (OFX) loaded NLCs were prepared by microemulsion or high shear homogenization methods. For combination of NLCs Compritol HD5 ATO was used as solid lipid, oleic acid as liquid lipid, Tween 80 as surfactant, ethanol as co-surfactant. The optimum NLCs was modified with 0.75% COL. The properties of NLCs in the absence or presence of OFX (0.3%) were characterized as zeta potential, particle size, viscosity and pH, TEM, drug loading, encapsulation efficiency and anti-microbial properties. Ex-vivo penetration/permeation studies were performed with rabbit cornea in Franz-diffusion cells. The penetration rate of OFX from NM-COL4OFX and NH-COL4OFX were significantly higher than commercial solution. Based on the selected formulations, in vivo tests were carried out by eye-drop instillation of NLCs in rabbit. The addition of COL improved the preocular residence time, controlled the drug release and enhanced the corneal bioavailability. In conclusion, OFX COL modified NLCs prepared by high shear homogenization method could be offered as a promising strategy for ocular drug delivery.

MATERIALIEN
Produktnummer
Marke
Produktbeschreibung

Sigma-Aldrich
Acetonitril, suitable for HPLC, gradient grade, ≥99.9%
Sigma-Aldrich
Ethyl alcohol, Pure 200 proof, Molecular Biology
Sigma-Aldrich
Ethyl alcohol, Pure, 200 proof, ACS reagent, ≥99.5%
Sigma-Aldrich
Essigsäure, glacial, ACS reagent, ≥99.7%
Sigma-Aldrich
Acetonitril, HPLC Plus, ≥99.9%
Sigma-Aldrich
Essigsäure, glacial, ReagentPlus®, ≥99%
Sigma-Aldrich
Ethyl alcohol, Pure, 200 proof, meets USP testing specifications
Sigma-Aldrich
Acetonitril, ACS reagent, ≥99.5%
Sigma-Aldrich
Acetonitril, anhydrous, 99.8%
Sigma-Aldrich
Ethyl alcohol, Pure, 200 proof, anhydrous, ≥99.5%
Sigma-Aldrich
Ethyl alcohol, Pure 190 proof, for molecular biology
Sigma-Aldrich
Essigsäure, glacial, ≥99.99% trace metals basis
Sigma-Aldrich
Acetonitril, suitable for HPLC, gradient grade, ≥99.9%
Sigma-Aldrich
Essigsäure -Lösung, suitable for HPLC
Sigma-Aldrich
Oleinsäure, technical grade, 90%
Sigma-Aldrich
Ethyl alcohol, Pure, 190 proof, ACS spectrophotometric grade, 95.0%
Sigma-Aldrich
Oleinsäure, ≥99% (GC)
Sigma-Aldrich
Ethanol, BioUltra, Molecular Biology, ≥99.8%, (absolute alcohol, without additive, A15 o1)
Sigma-Aldrich
Oleinsäure, BioReagent, suitable for cell culture
Supelco
Ethanol, wasserfrei, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
Ethanol, purum, fine spirit, denaturated with 4.8% methanol, F25 METHYL1, ~96% (based on denaturant-free substance)
Supelco
Ethanol, standard for GC
Sigma-Aldrich
Essigsäure, suitable for luminescence, BioUltra, ≥99.5% (GC)
USP
Eisessig, United States Pharmacopeia (USP) Reference Standard
Sigma-Aldrich
Oleinsäure, natural, FCC
Sigma-Aldrich
Oleinsäure, meets analytical specification of Ph, Eur., 65.0-88.0% (GC)
Sigma-Aldrich
Acetonitril, biotech. grade, ≥99.93%
Sigma-Aldrich
Acetonitril, electronic grade, 99.999% trace metals basis
Sigma-Aldrich
5α-Androstan-17β-ol-3-on, ≥97.5%
Supelco
Essigsäure, analytical standard