Direkt zum Inhalt
Merck
  • Nanomechanical properties of selected single pharmaceutical crystals as a predictor of their bulk behaviour.

Nanomechanical properties of selected single pharmaceutical crystals as a predictor of their bulk behaviour.

Pharmaceutical research (2014-08-06)
Mateja Egart, Biljana Janković, Nina Lah, Ilija Ilić, Stanko Srčič
ZUSAMMENFASSUNG

The main goal of this research was to assess the mechanical properties of APIs' polymorphic forms at the single-crystal level (piroxicam, famotidine, nifedipine, olanzapine) in order to predict their bulk deformational attributes, which are critical for some pharmaceutical technology processes. The mechanical properties of oriented single crystals were determined using instrumented nanoindentation (continuous stiffness measurement). All polymorphic forms investigated were previously identified using a combination of calorimetric and spectroscopic techniques. Mechanical properties such as Young's modulus and indentation hardness were consistent with the molecular packing of the polymorphic forms investigated with respect to crystal orientation. For mechanically interlocked structures, characteristic of most polymorphic forms, response of single crystals to indentation was isotropic. The material's bulk elastic properties can be successfully predicted by measuring Young's modulus of single crystals because a good linear correlation with a bulk parameter such as the tablets' elastic relaxation index was determined. The results confirm the idea that the intrinsic mechanical properties of pharmaceutical crystals (Young's modulus) largely control and anticipate their deformational behavior during tablet compression. Young's modulus and indentation hardness represent a very valuable and effective tool in preformulation studies for describing materials' mechanical attributes, which are important for technological processes in which materials are exposed to deformation.

MATERIALIEN
Produktnummer
Marke
Produktbeschreibung

Sigma-Aldrich
Acetonitril, suitable for HPLC, gradient grade, ≥99.9%
Sigma-Aldrich
Methanol, suitable for HPLC, ≥99.9%
Sigma-Aldrich
Aceton, ACS reagent, ≥99.5%
Sigma-Aldrich
Methanol, ACS reagent, ≥99.8%
Sigma-Aldrich
Ethylacetat, ACS reagent, ≥99.5%
Sigma-Aldrich
Aceton, suitable for HPLC, ≥99.9%
Sigma-Aldrich
Acetonitril, HPLC Plus, ≥99.9%
Sigma-Aldrich
Ethylacetat, suitable for HPLC, ≥99.7%
Sigma-Aldrich
Aceton, HPLC Plus, for HPLC, GC, and residue analysis, ≥99.9%
Sigma-Aldrich
Methanol, HPLC Plus, ≥99.9%
Sigma-Aldrich
Acetonitril, ACS reagent, ≥99.5%
Sigma-Aldrich
Ethylacetat, HPLC Plus, for HPLC, GC, and residue analysis, 99.9%
Sigma-Aldrich
Acetonitril, anhydrous, 99.8%
Sigma-Aldrich
Methanol, anhydrous, 99.8%
Sigma-Aldrich
Benzylalkohol, ReagentPlus®, ≥99%
Sigma-Aldrich
Acetonitril, suitable for HPLC, gradient grade, ≥99.9%
Sigma-Aldrich
Methanol, Laboratory Reagent, ≥99.6%
Sigma-Aldrich
Benzylalkohol, ACS reagent, ≥99.0%
Supelco
Benzylalkohol, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
Methanol, suitable for HPLC, gradient grade, suitable as ACS-grade LC reagent, ≥99.9%
Sigma-Aldrich
Methanol, ACS spectrophotometric grade, ≥99.9%
Sigma-Aldrich
Methanol, ACS reagent, ≥99.8%
Sigma-Aldrich
Ethylacetat, suitable for HPLC, ≥99.8%
Sigma-Aldrich
Ethylacetat, anhydrous, 99.8%
USP
Benzylalkohol, United States Pharmacopeia (USP) Reference Standard
Sigma-Aldrich
Aceton, ACS reagent, ≥99.5%
Sigma-Aldrich
Methanol, Absolute - Acetone free
Supelco
Aceton, analytical standard
USP
Methylalkohol, United States Pharmacopeia (USP) Reference Standard
Sigma-Aldrich
Methanol, BioReagent, ≥99.93%