Direkt zum Inhalt
Merck
  • Thin-layer chromatography/direct analysis in real time time-of-flight mass spectrometry and isotope dilution to analyze organophosphorus insecticides in fatty foods.

Thin-layer chromatography/direct analysis in real time time-of-flight mass spectrometry and isotope dilution to analyze organophosphorus insecticides in fatty foods.

Journal of chromatography. A (2014-12-03)
Osamu Kiguchi, Kazuko Oka, Masafumi Tamada, Takashi Kobayashi, Jun Onodera
ZUSAMMENFASSUNG

To assess food safety emergencies caused by highly hazardous chemical-tainted foods, simultaneous analysis of organophosphorus insecticides in fatty foods such as precooked foods was conducted using thin-layer chromatography/direct analysis in real time time-of-flight mass spectrometry (TLC/DART-TOFMS) and isotope dilution technique. Polar (methamidophos and acephate) and nonpolar organophosphorus insecticides (fenitrothion, diazinon, and EPN) were studied. Experiments to ascertain chromatographic patterns using TLC/DART-TOFMS reveal that it was more useful than GC/MS or GC/MS/MS for the simultaneous analyses of polar and nonpolar pesticides, while obviating the addition of a protective agent for tailing effects of polar pesticides. Lower helium gas temperature (260°C) for DART-TOFMS was suitable for the simultaneous analysis of target pesticides. Linearities were achieved respectively at a lower standard concentration range (0.05-5 μg) for diazinon and EPN and at a higher standard concentration range (2.5-25 μg) for methamidophos, acephate, and fenitrothion. Their respective coefficients of determination were ≥ 0.9989 and ≥ 0.9959. A few higher repeatabilities (RSDs) for diazinon and EPN were found (>20%), although isotope dilution technique was used. Application to the HPTLC plate without an automatic TLC sampler might be inferred as a cause of their higher RSDs. Detection limits were estimated in the higher picogram range for diazinon and EPN, and in the lower nanogram range for methamidophos, acephate, and fenitrothion. Aside from methamidophos, recovery results (n=3) obtained using a highly insecticide-tainted fatty food (dumpling) and raw food (grapefruit) samples (10mg/kg) using TLC/DART-TOFMS with both complex and simpler cleanups were not as susceptible to matrix effects (95-121%; RSD, 1.3-14%) as those using GC/MS/MS (102-117%; RSD, 0.4-8.5%), although dumpling samples using GC/MS were remarkably susceptible to matrix effects. The coupled method of TLC with simpler cleanup and DART-TOFMS can be regarded as the same analytical tool as GC/MS/MS, which is useful to assess food safety emergencies caused by highly hazardous chemical-tainted foods.

MATERIALIEN
Produktnummer
Marke
Produktbeschreibung

Sigma-Aldrich
Acetonitril, suitable for HPLC, gradient grade, ≥99.9%
Sigma-Aldrich
Aceton, ACS reagent, ≥99.5%
Sigma-Aldrich
Ethylacetat, ACS reagent, ≥99.5%
Sigma-Aldrich
Aceton, suitable for HPLC, ≥99.9%
Sigma-Aldrich
Acetonitril, HPLC Plus, ≥99.9%
Sigma-Aldrich
Ethylacetat, suitable for HPLC, ≥99.7%
Sigma-Aldrich
Aceton, HPLC Plus, for HPLC, GC, and residue analysis, ≥99.9%
Sigma-Aldrich
Acetonitril, ACS reagent, ≥99.5%
Sigma-Aldrich
Ethylacetat, HPLC Plus, for HPLC, GC, and residue analysis, 99.9%
Sigma-Aldrich
Hexan, ReagentPlus®, ≥99%
Sigma-Aldrich
Hexan, suitable for HPLC, ≥95%
Sigma-Aldrich
Acetonitril, anhydrous, 99.8%
Sigma-Aldrich
Cyclohexan, ACS reagent, ≥99%
Sigma-Aldrich
Cyclohexan, suitable for HPLC, ≥99.9%
Sigma-Aldrich
Acetonitril, suitable for HPLC, gradient grade, ≥99.9%
Sigma-Aldrich
Hexan, HPLC Plus, for HPLC, GC, and residue analysis, ≥95%
Sigma-Aldrich
Hexan, Laboratory Reagent, ≥95%
Sigma-Aldrich
Ethylacetat, suitable for HPLC, ≥99.8%
Sigma-Aldrich
Ethylacetat, anhydrous, 99.8%
Sigma-Aldrich
Aceton, ACS reagent, ≥99.5%
Supelco
Aceton, analytical standard
Sigma-Aldrich
L-Lysin -monohydrochlorid, from non-animal source, meets EP, JP, USP testing specifications, suitable for cell culture, 98.5-101.0%
Sigma-Aldrich
Tetraethylenpentamin, technical grade
Supelco
Ethylacetat, analytical standard
Supelco
Hexan, analytical standard
Sigma-Aldrich
Cyclohexan, anhydrous, 99.5%
Sigma-Aldrich
Aceton, histological grade, ≥99.5%
Sigma-Aldrich
Acetonitril, biotech. grade, ≥99.93%
Sigma-Aldrich
Acetonitril, electronic grade, 99.999% trace metals basis
USP
Aceton, United States Pharmacopeia (USP) Reference Standard