Direkt zum Inhalt
Merck

MicroRNA let-7b regulates genomic balance by targeting Aurora B kinase.

Molecular oncology (2015-02-17)
Jenni Heidi Eveliina Mäki-Jouppila, Sofia Pruikkonen, Mahesh Balasaheb Tambe, Miriam Ragle Aure, Tuuli Halonen, Anna-Leena Salmela, Leena Laine, Anne-Lise Børresen-Dale, Marko Johannes Kallio
ZUSAMMENFASSUNG

The let-7 microRNA (miRNA) family has been implicated in the regulation of diverse cellular processes and disease pathogenesis. In cancer, loss-of-function of let-7 miRNAs has been linked to tumorigenesis via increased expression of target oncogenes. Excessive proliferation rate of tumor cells is often associated with deregulation of mitotic proteins. Here, we show that let-7b contributes to the maintenance of genomic balance via targeting Aurora B kinase, a key regulator of the spindle assembly checkpoint (SAC). Our results indicate that let-7b binds to Aurora B kinase 3'UTR reducing mRNA and protein expression of the kinase. In cells, excess let-7b induced mitotic defects characteristic to Aurora B perturbation including increased rate of polyploidy and multipolarity, and premature SAC inactivation that leads to forced exit from chemically induced mitotic arrest. Moreover, the frequency of aneuploid HCT-116 cells was significantly increased upon let-7b overexpression compared to controls. Interestingly, together with a chemical Aurora B inhibitor, let-7b had an additive effect on polyploidy induction in HeLa cells. In breast cancer patients, reduced let-7b expression was found to be associated with increased Aurora B expression in grade 3 tumors. Furthermore, let-7b was found downregulated in the most aggressive forms of breast cancer determined by clinicopathological parameters. Together, our findings suggest that let-7b contributes to the fidelity of cell division via regulation of Aurora B. Moreover, the loss of let-7b in aggressive tumors may drive tumorigenesis by up-regulation of Aurora B and other targets of the miRNA, which further supports the role of let-7b in tumor suppression.

MATERIALIEN
Produktnummer
Marke
Produktbeschreibung

Sigma-Aldrich
Wasser, Nuclease-Free Water, for Molecular Biology
Sigma-Aldrich
Natriumdodecylsulfat, BioReagent, suitable for electrophoresis, Molecular Biology, ≥98.5% (GC)
Sigma-Aldrich
Saccharose, Molecular Biology, ≥99.5% (GC)
Sigma-Aldrich
Wasser, sterile-filtered, BioReagent, suitable for cell culture
Sigma-Aldrich
Saccharose, ≥99.5% (GC)
Roche
cOmplete, EDTA-freier Proteasehemmer-Cocktail, Tablets provided in EASYpacks
Sigma-Aldrich
Methanol, anhydrous, 99.8%
Sigma-Aldrich
Natriumdodecylsulfat, ≥99.0% (GC), dust-free pellets
Sigma-Aldrich
Saccharose, ≥99.5% (GC), BioXtra
Sigma-Aldrich
Saccharose, BioUltra, Molecular Biology, ≥99.5% (HPLC)
Sigma-Aldrich
Calciumchlorid -Lösung, BioUltra, Molecular Biology, ~1 M in H2O
Sigma-Aldrich
Natriumdodecylsulfat, ACS reagent, ≥99.0%
Sigma-Aldrich
Natriumdodecylsulfat -Lösung, BioUltra, Molecular Biology, 10% in H2O
Sigma-Aldrich
Propidiumjodid, ≥94.0% (HPLC)
Sigma-Aldrich
Natriumdodecylsulfat, ReagentPlus®, ≥98.5% (GC)
Sigma-Aldrich
Thymidin, powder, BioReagent, suitable for cell culture
Sigma-Aldrich
Calciumchlorid, anhydrous, BioReagent, suitable for insect cell culture, suitable for plant cell culture, ≥96.0%
Sigma-Aldrich
Wasser, for embryo transfer, sterile-filtered, BioXtra, suitable for mouse embryo cell culture
Sigma-Aldrich
Wasser, Molecular Biology, sterile filtered
Sigma-Aldrich
Saccharose, ≥99.5% (GC)
Sigma-Aldrich
Natriumdodecylsulfat, BioUltra, Molecular Biology, ≥99.0% (GC)
Sigma-Aldrich
Saccharose, ≥99.5% (GC), BioReagent, suitable for cell culture, suitable for insect cell culture
Sigma-Aldrich
Natriumdodecylsulfat -Lösung, BioUltra, 20% in H2O
Sigma-Aldrich
Saccharose, ACS reagent
Sigma-Aldrich
Nocodazol, ≥99% (TLC), powder
Sigma-Aldrich
Paclitaxel, from semisynthetic, ≥98%
Supelco
Natriumdodecylsulfat, dust-free pellets, suitable for electrophoresis, Molecular Biology, ≥99.0% (GC)
Sigma-Aldrich
Thymidin, ≥99%
Sigma-Aldrich
Propidiumjodid -Lösung
Sigma-Aldrich
Wasser, BioPerformance Certified