Direkt zum Inhalt
Merck
  • Human Ocular Epithelial Cells Endogenously Expressing SOX2 and OCT4 Yield High Efficiency of Pluripotency Reprogramming.

Human Ocular Epithelial Cells Endogenously Expressing SOX2 and OCT4 Yield High Efficiency of Pluripotency Reprogramming.

PloS one (2015-07-02)
Ming-Wai Poon, Jia He, Xiaowei Fang, Zhao Zhang, Weixin Wang, Junwen Wang, Fangfang Qiu, Hung-Fat Tse, Wei Li, Zuguo Liu, Qizhou Lian
ZUSAMMENFASSUNG

A variety of pluripotency reprogramming frequencies from different somatic cells has been observed, indicating cell origin is a critical contributor for efficiency of pluripotency reprogramming. Identifying the cell sources for efficient induced pluripotent stem cells (iPSCs) generation, and defining its advantages or disadvantages on reprogramming, is therefore important. Human ocular tissue-derived conjunctival epithelial cells (OECs) exhibited endogenous expression of reprogramming factors OCT4A (the specific OCT 4 isoform on pluripotency reprogramming) and SOX2. We therefore determined whether OECs could be used for high efficiency of iPSCs generation. We compared the endogenous expression levels of four pluripotency factors and the pluripotency reprograming efficiency of human OECs with that of ocular stromal cells (OSCs). Real-time PCR, microarray analysis, Western blotting and immunostaining assays were employed to compare OECiPSCs with OSCiPSCs on molecular bases of reprogramming efficiency and preferred lineage-differentiation potential. Using the traditional KMOS (KLF4, C-MYC, OCT4 and SOX2) reprogramming protocol, we confirmed that OECs, endogenously expressing reprogramming factors OCT4A and SOX2, yield very high efficiency of iPSCs generation (~1.5%). Furthermore, higher efficiency of retinal pigmented epithelial differentiation (RPE cells) was observed in OECiPSCs compared to OSCiPSCs or skin fibroblast iMR90iPSCs. The findings in this study suggest that conjunctival-derived epithelial (OECs) cells can be easier converted to iPSCs than conjunctival-derived stromal cells (OSCs). This cell type may also have advantages in retinal pigmented epithelial differentiation.

MATERIALIEN
Produktnummer
Marke
Produktbeschreibung

Sigma-Aldrich
Dimethylsulfoxid, Hybri-Max, sterile-filtered, BioReagent, suitable for hybridoma, ≥99.7%
Sigma-Aldrich
Dimethylsulfoxid, Molecular Biology
Sigma-Aldrich
Dimethylsulfoxid, sterile-filtered, BioPerformance Certified, meets EP, USP testing specifications, suitable for hybridoma
Sigma-Aldrich
HEPES, ≥99.5% (titration)
Sigma-Aldrich
Dimethylsulfoxid, anhydrous, ≥99.9%
Sigma-Aldrich
HEPES, BioPerformance Certified, ≥99.5% (titration), suitable for cell culture
Sigma-Aldrich
Dimethylsulfoxid, ≥99.5% (GC), suitable for plant cell culture
Sigma-Aldrich
DAPI, for nucleic acid staining
Sigma-Aldrich
Hydrocortison, BioReagent, suitable for cell culture
Sigma-Aldrich
Hydrocortison, γ-irradiated, powder, BioXtra, suitable for cell culture
Sigma-Aldrich
Dimethylsulfoxid, BioUltra, Molecular Biology, ≥99.5% (GC)
Sigma-Aldrich
Hydrocortison, ≥98% (HPLC)
Sigma-Aldrich
HEPES-Pufferlösung, 1 M in H2O
Sigma-Aldrich
Dimethylsulfoxid, meets EP testing specifications, meets USP testing specifications
Sigma-Aldrich
HEPES, BioUltra, Molecular Biology, ≥99.5% (T)
Sigma-Aldrich
Dimethylsulfoxid, PCR Reagent
Sigma-Aldrich
HEPES, BioXtra, suitable for mouse embryo cell culture, ≥99.5% (titration)
Sigma-Aldrich
HEPES, BioXtra, pH 5.0-6.5 (1 M in H2O), ≥99.5% (titration)
Sigma-Aldrich
HEPES, anhydrous, free-flowing, Redi-Dri, ≥99.5%
Sigma-Aldrich
Hydrocortison, meets USP testing specifications
Sigma-Aldrich
8-Octanoyloxypyren-1,3,6-Trisulfonsäure Trinatriumsalz, suitable for fluorescence, ≥90% (HPCE)
Sigma-Aldrich
Dimethylsulfoxid, ≥99.6%, ReagentPlus®