Direkt zum Inhalt
Merck
  • Fluocinolone Acetonide Is a Potent Synergistic Factor of TGF-β3-Associated Chondrogenesis of Bone Marrow-Derived Mesenchymal Stem Cells for Articular Surface Regeneration.

Fluocinolone Acetonide Is a Potent Synergistic Factor of TGF-β3-Associated Chondrogenesis of Bone Marrow-Derived Mesenchymal Stem Cells for Articular Surface Regeneration.

Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research (2015-03-11)
Emilio Satoshi Hara, Mitsuaki Ono, Hai Thanh Pham, Wataru Sonoyama, Satoshi Kubota, Masaharu Takigawa, Takuya Matsumoto, Marian F Young, Bjorn R Olsen, Takuo Kuboki
ZUSAMMENFASSUNG

Articular cartilage repair remains a challenging problem. Based on a high-throughput screening and functional analysis, we found that fluocinolone acetonide (FA) in combination with transforming growth factor beta 3 (TGF-β3) strongly potentiated chondrogenic differentiation of human bone marrow-derived mesenchymal stem cells (hBMSCs). In an in vivo cartilage defect model in knee joints of immunocompromised mice, transplantation of FA/TGF-β3-treated hBMSCs could completely repair the articular surface. Analysis of the intracellular pathways revealed that FA enhanced TGF-β3-induced phosphorylation of Smad2 and Smad3. Additionally, we performed a pathway array and found that FA activates the mTORC1/AKT pathway. Chemical inhibition of mTORC1 with rapamycin substantially suppressed FA effect, and inhibition of AKT completely repressed chondrogenesis of hBMSCs. Inhibition of glucocorticoid receptor with mifepristone also suppressed FA effect, suggesting that FA involves binding to the glucocorticoid receptor. Comparative analysis with other glucocorticoids (triamcinolone acetonide [TA] and dexamethasone [DEX]) revealed the unique ability of FA to repair articular cartilage surgical defects. Analysis of intracellular pathways showed that the mTORC1/AKT pathway and the glucocorticoid receptor was highly activated with FA and TA, but to a lesser extent with DEX. Collectively, these results show a unique ability of FA to enhance TGF-β3-associated chondrogenesis, and suggest that the FA/TGF-β3 combination may be used as major inducer of chondrogenesis in vitro. Additionally, FA/TGF-β3 could be potentially applied in a clinical setting to increase the efficiency of regenerative approaches based on chondrogenic differentiation of stem cells.

MATERIALIEN
Produktnummer
Marke
Produktbeschreibung

Sigma-Aldrich
Dimethylsulfoxid, Hybri-Max, sterile-filtered, BioReagent, suitable for hybridoma, ≥99.7%
Sigma-Aldrich
Dimethylsulfoxid, Molecular Biology
Sigma-Aldrich
Dimethylsulfoxid, sterile-filtered, BioPerformance Certified, meets EP, USP testing specifications, suitable for hybridoma
Sigma-Aldrich
Dimethylsulfoxid, anhydrous, ≥99.9%
Sigma-Aldrich
Dimethylsulfoxid, ≥99.5% (GC), suitable for plant cell culture
Sigma-Aldrich
Dexamethason, powder, BioReagent, suitable for cell culture, ≥97%
Sigma-Aldrich
DAPI, for nucleic acid staining
Sigma-Aldrich
L-Ascorbinsäure, powder, suitable for cell culture, γ-irradiated
Sigma-Aldrich
L-Ascorbinsäure, BioXtra, ≥99.0%, crystalline
Sigma-Aldrich
L-Ascorbinsäure, suitable for cell culture, suitable for plant cell culture, ≥98%
Sigma-Aldrich
L-Ascorbinsäure, 99%
Sigma-Aldrich
L-Ascorbinsäure, reagent grade, crystalline
Sigma-Aldrich
BIS-TRIS, ≥98.0% (titration)
Sigma-Aldrich
Dimethylsulfoxid, BioUltra, Molecular Biology, ≥99.5% (GC)
Sigma-Aldrich
Dexamethason, ≥98% (HPLC), powder
Sigma-Aldrich
Dimethylsulfoxid, meets EP testing specifications, meets USP testing specifications
Sigma-Aldrich
L-Ascorbinsäure, ACS reagent, ≥99%
Sigma-Aldrich
Mifepriston, ≥98%
SAFC
BIS-TRIS
Sigma-Aldrich
Rapamycin, Ready Made Solution, 2.5 mg/mL in DMSO (2.74 mM), from Streptomyces hygroscopicus
Sigma-Aldrich
L-Ascorbinsäure, meets USP testing specifications
Sigma-Aldrich
Dimethylsulfoxid, PCR Reagent
Sigma-Aldrich
L-Ascorbinsäure, reagent grade
Sigma-Aldrich
BIS-TRIS, BioPerformance Certified, suitable for cell culture, suitable for insect cell culture, ≥98.0%
Sigma-Aldrich
Selensäure, 98%
Sigma-Aldrich
Dexamethason, powder, γ-irradiated, BioXtra, suitable for cell culture, ≥80% (HPLC)
Sigma-Aldrich
Morphogenetisches Knochenprotein 2 human, ≥98% (SDS-PAGE), recombinant, expressed in E. coli, lyophilized powder, suitable for cell culture
Sigma-Aldrich
L-Ascorbinsäure, puriss. p.a., ACS reagent, reag. ISO, Ph. Eur., 99.7-100.5% (oxidimetric)
Sigma-Aldrich
BIS-TRIS, BioXtra, ≥98.0% (titration)
Sigma-Aldrich
L-Ascorbinsäure, FCC, FG