Direkt zum Inhalt
Merck
  • Efficacy of PARP Inhibitor Rucaparib in Orthotopic Glioblastoma Xenografts Is Limited by Ineffective Drug Penetration into the Central Nervous System.

Efficacy of PARP Inhibitor Rucaparib in Orthotopic Glioblastoma Xenografts Is Limited by Ineffective Drug Penetration into the Central Nervous System.

Molecular cancer therapeutics (2015-10-07)
Karen E Parrish, Ling Cen, James Murray, David Calligaris, Sani Kizilbash, Rajendar K Mittapalli, Brett L Carlson, Mark A Schroeder, Julieann Sludden, Alan V Boddy, Nathalie Y R Agar, Nicola J Curtin, William F Elmquist, Jann N Sarkaria
ZUSAMMENFASSUNG

PARP inhibition can enhance the efficacy of temozolomide and prolong survival in orthotopic glioblastoma (GBM) xenografts. The aim of this study was to evaluate the combination of the PARP inhibitor rucaparib with temozolomide and to correlate pharmacokinetic and pharmacodynamic studies with efficacy in patient-derived GBM xenograft models. The combination of rucaparib with temozolomide was highly effective in vitro in short-term explant cultures derived from GBM12, and, similarly, the combination of rucaparib and temozolomide (dosed for 5 days every 28 days for 3 cycles) significantly prolonged the time to tumor regrowth by 40% in heterotopic xenografts. In contrast, the addition of rucaparib had no impact on the efficacy of temozolomide in GBM12 or GBM39 orthotopic models. Using Madin-Darby canine kidney (MDCK) II cells stably expressing murine BCRP1 or human MDR1, cell accumulation studies demonstrated that rucaparib is transported by both transporters. Consistent with the influence of these efflux pumps on central nervous system drug distribution, Mdr1a/b(-/-)Bcrp1(-/-) knockout mice had a significantly higher brain to plasma ratio for rucaparib (1.61 ± 0.25) than wild-type mice (0.11 ± 0.08). A pharmacokinetic and pharmacodynamic evaluation after a single dose confirmed limited accumulation of rucaparib in the brain is associated with substantial residual PARP enzymatic activity. Similarly, matrix-assisted laser desorption/ionization mass spectrometric imaging demonstrated significantly enhanced accumulation of drug in flank tumor compared with normal brain or orthotopic tumors. Collectively, these results suggest that limited drug delivery into brain tumors may significantly limit the efficacy of rucaparib combined with temozolomide in GBM.

MATERIALIEN
Produktnummer
Marke
Produktbeschreibung

Sigma-Aldrich
Trifluoressigsäure, ReagentPlus®, 99%
Sigma-Aldrich
Methanol, ACS reagent, ≥99.8%
Sigma-Aldrich
Ethylacetat, ACS reagent, ≥99.5%
Sigma-Aldrich
Ameisensäure, reagent grade, ≥95%
Sigma-Aldrich
Acetonitril, ACS reagent, ≥99.5%
Sigma-Aldrich
Ameisensäure, ACS reagent, ≥96%
Sigma-Aldrich
Acetonitril, anhydrous, 99.8%
Sigma-Aldrich
Trifluoressigsäure, puriss. p.a., suitable for HPLC, ≥99.0% (GC)
Sigma-Aldrich
Methanol, anhydrous, 99.8%
Sigma-Aldrich
Ammoniumformat, reagent grade, 97%
Sigma-Aldrich
Methanol, Laboratory Reagent, ≥99.6%
Sigma-Aldrich
Ammoniumformat, ≥99.995% trace metals basis
Sigma-Aldrich
Trifluoressigsäure, ≥99%, for protein sequencing
Sigma-Aldrich
Ameisensäure, ACS reagent, ≥88%
Sigma-Aldrich
Methanol, ACS spectrophotometric grade, ≥99.9%
Sigma-Aldrich
Methanol, ACS reagent, ≥99.8%
Sigma-Aldrich
Ethylacetat, anhydrous, 99.8%
Sigma-Aldrich
Ammoniumformiat -Lösung, BioUltra, 10 M in H2O
Sigma-Aldrich
Methanol, Absolute - Acetone free
Sigma-Aldrich
2,5-Dihydroxybenzoesäure, 98%
Sigma-Aldrich
Methanol, BioReagent, ≥99.93%
Supelco
2,5-Dihydroxybenzoesäure, suitable for matrix substance for MALDI-MS, >99.0% (HPLC)
Sigma-Aldrich
Acetonitril, biotech. grade, ≥99.93%
Sigma-Aldrich
Acetonitril, electronic grade, 99.999% trace metals basis
Sigma-Aldrich
Methanol, ACS reagent, ≥99.8%
Sigma-Aldrich
Stickstoff, ≥99.998%
Sigma-Aldrich
Ameisensäure, ≥95%, FCC, FG
Sigma-Aldrich
Acetonitril, suitable for DNA synthesis, ≥99.9% (GC)
Sigma-Aldrich
Ethylacetat, ≥99%, FCC, FG
Sigma-Aldrich
Ethylacetat, ACS reagent, ≥99.5%