Direkt zum Inhalt
Merck
  • AGE-modified basement membrane cooperates with Endo180 to promote epithelial cell invasiveness and decrease prostate cancer survival.

AGE-modified basement membrane cooperates with Endo180 to promote epithelial cell invasiveness and decrease prostate cancer survival.

The Journal of pathology (2014-11-20)
Mercedes Rodriguez-Teja, Julian H Gronau, Claudia Breit, Yu Zhi Zhang, Ai Minamidate, Matthew P Caley, Afshan McCarthy, Thomas R Cox, Janine T Erler, Luke Gaughan, Steven Darby, Craig Robson, Francesco Mauri, Jonathan Waxman, Justin Sturge
ZUSAMMENFASSUNG

Biomechanical strain imposed by age-related thickening of the basal lamina and augmented tissue stiffness in the prostate gland coincides with increased cancer risk. Here we hypothesized that the structural alterations in the basal lamina associated with age can induce mechanotransduction pathways in prostate epithelial cells (PECs) to promote invasiveness and cancer progression. To demonstrate this, we developed a 3D model of PEC acini in which thickening and stiffening of basal lamina matrix was induced by advanced glycation end-product (AGE)-dependent non-enzymatic crosslinking of its major components, collagen IV and laminin. We used this model to demonstrate that antibody targeted blockade of CTLD2, the second of eight C-type lectin-like domains in Endo180 (CD280, CLEC13E, KIAA0709, MRC2, TEM9, uPARAP) that can recognize glycosylated collagens, reversed actinomyosin-based contractility [myosin-light chain-2 (MLC2) phosphorylation], loss of cell polarity, loss of cell-cell junctions, luminal infiltration and basal invasion induced by AGE-modified basal lamina matrix in PEC acini. Our in vitro results were concordant with luminal occlusion of acini in the prostate glands of adult Endo180(Δ) (Ex2-6/) (Δ) (Ex2-6) mice, with constitutively exposed CTLD2 and decreased survival of men with early (non-invasive) prostate cancer with high epithelial Endo180 expression and levels of AGE. These findings indicate that AGE-dependent modification of the basal lamina induces invasive behaviour in non-transformed PECs via a molecular mechanism linked to cancer progression. This study provides a rationale for targeting CTLD2 in Endo180 in prostate cancer and other pathologies in which increased basal lamina thickness and tissue stiffness are driving factors. © 2014 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.

MATERIALIEN
Produktnummer
Marke
Produktbeschreibung

Sigma-Aldrich
Acetonitril, suitable for HPLC, gradient grade, ≥99.9%
Sigma-Aldrich
Acetonitril, HPLC Plus, ≥99.9%
Sigma-Aldrich
Ameisensäure, reagent grade, ≥95%
Sigma-Aldrich
Acetonitril, ACS reagent, ≥99.5%
Sigma-Aldrich
Ameisensäure, ACS reagent, ≥96%
Sigma-Aldrich
Acetonitril, anhydrous, 99.8%
Sigma-Aldrich
Ameisensäure, puriss. p.a., ACS reagent, reag. Ph. Eur., ≥98%
Sigma-Aldrich
DAPI, for nucleic acid staining
Sigma-Aldrich
Natriumazid, ReagentPlus®, ≥99.5%
Sigma-Aldrich
Natriumchlorid, Molecular Biology, DNase, RNase, and protease, none detected, ≥99% (titration)
Sigma-Aldrich
Acetonitril, suitable for HPLC, gradient grade, ≥99.9%
Sigma-Aldrich
Natriumchlorid -Lösung, 5 M in H2O, BioReagent, Molecular Biology, suitable for cell culture
Sigma-Aldrich
Natriumchlorid, BioXtra, ≥99.5% (AT)
Sigma-Aldrich
Natriumcyanoborhydrid, reagent grade, 95%
Sigma-Aldrich
Acetonitril, ≥99.9% (GC)
Sigma-Aldrich
Natriumchlorid, BioReagent, suitable for cell culture, suitable for insect cell culture, suitable for plant cell culture, ≥99%
Sigma-Aldrich
Natriumchlorid -Lösung, 0.9% in water, BioXtra, suitable for cell culture
Sigma-Aldrich
Ameisensäure, puriss., meets analytical specifications of DAC, FCC, 98.0-100%
Sigma-Aldrich
Ameisensäure, ACS reagent, ≥88%
Sigma-Aldrich
Natriumazid, BioUltra, ≥99.5% (T)
Supelco
Chlormethan -Lösung, 200 μg/mL in methanol, analytical standard
SAFC
Natriumchlorid -Lösung, 5 M
Sigma-Aldrich
Cyanogenbromid, reagent grade, 97%
Sigma-Aldrich
Acetonitril, suitable for HPLC-GC, ≥99.8% (GC)
Sigma-Aldrich
Natriumazid, purum p.a., ≥99.0% (T)
Sigma-Aldrich
Natriumchlorid, BioUltra, Molecular Biology, ≥99.5% (AT)
Sigma-Aldrich
Natriumazid, BioXtra
Sigma-Aldrich
Natriumchlorid -Lösung, BioUltra, Molecular Biology, ~5 M in H2O
Sigma-Aldrich
Aminoguanidin -hydrochlorid, ≥98%
Sigma-Aldrich
Glycolaldehyd-Dimer, crystalline, mixture of stereoisomers. Melts between 80 and 90 °C depending on stereoisomeric composition