Skip to Content
Merck
  • Monitoring matrix metalloproteinase activity at the epidermal-dermal interface by SILAC-iTRAQ-TAILS.

Monitoring matrix metalloproteinase activity at the epidermal-dermal interface by SILAC-iTRAQ-TAILS.

Proteomics (2015-04-15)
Pascal Schlage, Tobias Kockmann, Jayachandran N Kizhakkedathu, Ulrich auf dem Keller
ABSTRACT

Secreted proteases act on interstitial tissue secretomes released from multiple cell types. Thus, substrate proteins might be part of higher molecular complexes constituted by many proteins with diverse and potentially unknown cellular origin. In cell culture, these may be reconstituted by mixing native secretomes from different cell types prior to incubation with a test protease. Although current degradomics techniques could identify novel substrate proteins in these complexes, all information on the cellular origin is lost. To address this limitation, we combined iTRAQ-based terminal amine isotopic labeling of substrates (iTRAQ-TAILS) with SILAC to assign proteins to a specific cell type by MS1- and their cleavage by MS2-based quantification in the same experiment. We demonstrate the power of our newly established workflow by monitoring matrix metalloproteinase (MMP) 10 dependent cleavages in mixtures from light-labeled keratinocyte and heavy-labeled fibroblast secretomes. This analysis correctly assigned extracellular matrix components, such as laminins and collagens, to their respective cellular origins and revealed their processing in an MMP10-dependent manner. Hence, our newly devised degradomics workflow facilitates deeper insight into protease activity in complex intercellular compartments such as the epidermal-dermal interface by integrating multiple modes of quantification with positional proteomics. All MS data have been deposited in the ProteomeXchange with identifier PXD001643 (http://proteomecentral.proteomexchange.org/dataset/PXD001643).

MATERIALS
Product Number
Brand
Product Description

SAFC
Sodium chloride solution, 5 M
Sigma-Aldrich
Sodium chloride, BioPerformance Certified, ≥99% (titration), suitable for insect cell culture, suitable for plant cell culture
Sigma-Aldrich
Sodium pyruvate, powder, BioReagent, suitable for cell culture, suitable for insect cell culture, ≥99%
Sigma-Aldrich
Sodium chloride solution, 5 M in H2O, BioReagent, Molecular Biology, suitable for cell culture
Sigma-Aldrich
Sodium pyruvate, ReagentPlus®, ≥99%
Sigma-Aldrich
Sodium pyruvate, Hybri-Max, powder, suitable for hybridoma
Sigma-Aldrich
Phenylmethanesulfonyl fluoride, ≥98.5% (GC)
Sigma-Aldrich
Sodium pyruvate, BioXtra, ≥99%
Sigma-Aldrich
Sodium chloride solution, 5 M
Sigma-Aldrich
D-(+)-Glucose, ≥99.5% (GC), BioXtra
Sigma-Aldrich
Sodium chloride, BioReagent, suitable for cell culture, suitable for insect cell culture, suitable for plant cell culture, ≥99%
Sigma-Aldrich
D-(+)-Glucose, suitable for mouse embryo cell culture, ≥99.5% (GC)
Sigma-Aldrich
HEPES, BioXtra, pH 5.0-6.5 (1 M in H2O), ≥99.5% (titration)
Sigma-Aldrich
HEPES, BioXtra, suitable for mouse embryo cell culture, ≥99.5% (titration)
Sigma-Aldrich
Sodium chloride, tablet
Sigma-Aldrich
Sodium chloride, BioXtra, ≥99.5% (AT)
Sigma-Aldrich
HEPES, ≥99.5% (titration)
Sigma-Aldrich
D-(+)-Glucose, Hybri-Max, powder, BioReagent, suitable for hybridoma
Sigma-Aldrich
HEPES, BioPerformance Certified, ≥99.5% (titration), suitable for cell culture
Sigma-Aldrich
D-(+)-Glucose, ≥99.5% (GC)
Sigma-Aldrich
D-(+)-Glucose, powder, BioReagent, suitable for cell culture, suitable for insect cell culture, suitable for plant cell culture, ≥99.5%
Sigma-Aldrich
D-(+)-Glucose, ACS reagent
Sigma-Aldrich
Sodium chloride solution, 0.9% in water, BioXtra, suitable for cell culture
Sigma-Aldrich
Sodium chloride, Molecular Biology, DNase, RNase, and protease, none detected, ≥99% (titration)
Sigma-Aldrich
Sodium chloride, meets analytical specification of Ph. Eur., BP, USP, 99.0-100.5%
Sigma-Aldrich
HEPES, BioUltra, Molecular Biology, ≥99.5% (T)
Sigma-Aldrich
Isopropyl alcohol, ≥99.7%, FCC, FG
Sigma-Aldrich
Phenylmethanesulfonyl fluoride, ≥99.0% (T)
Sigma-Aldrich
Acetone, suitable for HPLC, ≥99.9%
Sigma-Aldrich
Sodium chloride, AnhydroBeads, −10 mesh, 99.999% trace metals basis