Passa al contenuto
Merck

A mechanism for exocyst-mediated tethering via Arf6 and PIP5K1C-driven phosphoinositide conversion.

Current biology : CB (2022-05-25)
Hannes Maib, David H Murray
ABSTRACT

Polarized trafficking is necessary for the development of eukaryotes and is regulated by a conserved molecular machinery. Late steps of cargo delivery are mediated by the exocyst complex, which integrates lipid and protein components to tether vesicles for plasma membrane fusion. However, the molecular mechanisms of this process are poorly defined. Here, we reconstitute functional octameric human exocyst, demonstrating the basis for holocomplex coalescence and biochemically stable subcomplexes. We determine that each subcomplex independently binds to phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2), which is minimally sufficient for membrane tethering. Through reconstitution and epithelial cell biology experiments, we show that Arf6-mediated recruitment of the lipid kinase PIP5K1C rapidly converts phosphatidylinositol 4-phosphate (PI(4)P) to PI(4,5)P2, driving exocyst recruitment and membrane tethering. These results provide a molecular mechanism of exocyst-mediated tethering and a unique functional requirement for phosphoinositide signaling on late-stage vesicles in the vicinity of the plasma membrane.

MATERIALI
Numero di prodotto
Marchio
Descrizione del prodotto

Millipore
Nucleasi® Benzonase, ≥250 units/μL, ≥90% (SDS-PAGE), recombinant, expressed in E. coli, buffered aqueous glycerol solution
Sigma-Aldrich
Siero di capra
Sigma-Aldrich
β-Casein from bovine milk, BioUltra, ≥98% (PAGE)