Passa al contenuto
Merck
  • Theoretical studies on the Mo-catalyzed asymmetric intramolecular Pauson-Khand-type [2+2+1] cycloadditions of 3-allyloxy-1-propynylphosphonates.

Theoretical studies on the Mo-catalyzed asymmetric intramolecular Pauson-Khand-type [2+2+1] cycloadditions of 3-allyloxy-1-propynylphosphonates.

Journal of molecular modeling (2012-02-03)
Qingxi Meng, Ming Li
ABSTRACT

Density functional theory (DFT) was used to investigate the Mo-catalyzed intramolecular Pauson-Khand reaction of 3-allyloxy-1-propynylphosphonates. All intermediates and transition states were optimized completely at the B3LYP/6-31 G(d,p) level [LANL2DZ(f) for Mo]. In the Mo-catalyzed intramolecular Pauson-Khand reaction, the C–C oxidative cyclization reaction was the chirality-determining step, and the reductive elimination reaction was the rate-determining step. The carbonyl insertion reaction into the Mo–C(sp(3)) bondwas easier than into the Mo–C=C bond. And the dominant product predicted theoretically was of (S)-chirality, which agreed with experimental data. This reaction was solventd ependent, and toluene was the best among the three solvents toluene, CH3CN, and THF.

MATERIALI
Numero di prodotto
Marchio
Descrizione del prodotto

Sigma-Aldrich
Molybdenum hexacarbonyl, ≥99.9% trace metals basis (excluding W) purified by sublimation