Passa al contenuto
Merck
  • Photocatalysis of sub-ppm limonene over multiwalled carbon nanotubes/titania composite nanofiber under visible-light irradiation.

Photocatalysis of sub-ppm limonene over multiwalled carbon nanotubes/titania composite nanofiber under visible-light irradiation.

Journal of hazardous materials (2014-12-03)
Wan-Kuen Jo, Hyun-Jung Kang
ABSTRACT

This study was conducted under visible-light exposure to investigate the photocatalytic characteristics of a multiwalled carbon nanotube/titania (TiO2) composite nanofiber (MTCN) using a continuous-flow tubular reactor. The MTCN was prepared by a sol-gel process, followed by an electrospinning technique. The photocatalytic decomposition efficiency for limonene on the MTCN was higher than those obtained from reference TiO2 nanofibers or P25 TiO2, and the experimental results agreed well with the Langmuir-Hinshelwood model. The CO concentrations generated during the photocatalysis did not reach levels toxic to humans. The mineralization efficiency for limonene on the MTCN was also higher than that for P25 TiO2. Moreover, the mineralization efficiency obtained using the MTCN increased steeply from 8.3 to 91.1% as the residence time increased from 7.8 to 78.0s, compared to the increase in the decomposition efficiencies for limonene from 90.1 to 99.9%. Three gas-phase intermediates (methacrolein, acetic acid, and limonene oxide) were quantitatively determined for the photocatalysis for limonene over the MTCN, whereas only two intermediates (acetic acid and limonene oxide) were quantitatively determined over P25 TiO2. Other provisional gas-phase intermediates included cyclopropyl methyl ketone and 2-ethylbutanal.

MATERIALI
Numero di prodotto
Marchio
Descrizione del prodotto

Sigma-Aldrich
Ethyl alcohol, Pure, 200 proof, ACS reagent, ≥99.5%
Sigma-Aldrich
Acido acetico, glacial, ACS reagent, ≥99.7%
Sigma-Aldrich
Acido nitrico, ACS reagent, 70%
Sigma-Aldrich
Acido acetico, glacial, ReagentPlus®, ≥99%
Sigma-Aldrich
Ethyl alcohol, Pure, 200 proof, meets USP testing specifications
Sigma-Aldrich
Ethyl alcohol, Pure 190 proof, for molecular biology
Sigma-Aldrich
Acido nitrico, 70%, purified by redistillation, ≥99.999% trace metals basis
Sigma-Aldrich
Acido acetico, glacial, ≥99.99% trace metals basis
Sigma-Aldrich
Acido acetico, suitable for HPLC
Sigma-Aldrich
Acido nitrico, puriss. p.a., 65.0-67.0%
Sigma-Aldrich
Titanium(IV) butoxide, reagent grade, 97%
Sigma-Aldrich
Etanolo, BioUltra, Molecular Biology, ≥99.8%, (absolute alcohol, without additive, A15 o1)
Sigma-Aldrich
Activated Charcoal Norit®, Norit® PK 1-3, from peat, steam activated, granular
Supelco
Etanolo, Pharmaceutical Secondary Standard; Certified Reference Material
Supelco
Etanolo, standard for GC
Sigma-Aldrich
Etanolo, purum, fine spirit, denaturated with 4.8% methanol, F25 METHYL1, ~96% (based on denaturant-free substance)
Sigma-Aldrich
Acido acetico, suitable for luminescence, BioUltra, ≥99.5% (GC)
USP
Acido acetico, United States Pharmacopeia (USP) Reference Standard
Sigma-Aldrich
5α-Androstan-17β-ol-3-one, ≥97.5%
Supelco
Acido nitrico, 0.1 M HNO3 in water (0.1N), eluent concentrate for IC
Sigma-Aldrich
Activated Charcoal Norit®, Norit® GAC 1240W, from coal, steam activated, granular
Sigma-Aldrich
Acido nitrico, ACS reagent, ≥90.0%
Sigma-Aldrich
Carbon nanofibers, graphitized, platelets(conical), >98% carbon basis, D × L 100 nm × 20-200 μm
Supelco
Acido acetico, analytical standard
Sigma-Aldrich
Activated Charcoal Norit®, Norit® SX2, powder, from peat, multi-purpose activated charcoal, steam activated and acid washed
Sigma-Aldrich
Carbon nanofibers, pyrolitically stripped, platelets(conical), >98% carbon basis, D × L 100 nm × 20-200 μm
Sigma-Aldrich
Acido acetico, ≥99.5%, FCC, FG
Sigma-Aldrich
Acido acetico, natural, ≥99.5%, FG
Sigma-Aldrich
Activated Charcoal Norit®, Norit® RB3, steam activated, rod
Sigma-Aldrich
Carbon, mesoporous, less than 100 ppm Al, Ti, Fe, Ni, Cu, and Zn combined