Passa al contenuto
Merck

Discovery of a novel general anesthetic chemotype using high-throughput screening.

Anesthesiology (2015-01-21)
Andrew R McKinstry-Wu, Weiming Bu, Ganesha Rai, Wendy A Lea, Brian P Weiser, David F Liang, Anton Simeonov, Ajit Jadhav, David J Maloney, Roderic G Eckenhoff
ABSTRACT

The development of novel anesthetics has historically been a process of combined serendipity and empiricism, with most recent new anesthetics developed via modification of existing anesthetic structures. Using a novel high-throughput screen employing the fluorescent anesthetic 1-aminoanthracene and apoferritin as a surrogate for on-pathway anesthetic protein target(s), we screened a 350,000 compound library for competition with 1-aminoanthracene-apoferritin binding. Hit compounds meeting structural criteria had their binding affinities for apoferritin quantified with isothermal titration calorimetry and were tested for γ-aminobutyric acid type A receptor binding using a flunitrazepam binding assay. Chemotypes with a strong presence in the top 700 and exhibiting activity via isothermal titration calorimetry were selected for medicinal chemistry optimization including testing for anesthetic potency and toxicity in an in vivo Xenopus laevis tadpole assay. Compounds with low toxicity and high potency were tested for anesthetic potency in mice. From an initial chemical library of more than 350,000 compounds, we identified 2,600 compounds that potently inhibited 1-aminoanthracene binding to apoferritin. A subset of compounds chosen by structural criteria (700) was successfully reconfirmed using the initial assay. Based on a strong presence in both the initial and secondary screens the 6-phenylpyridazin-3(2H)-one chemotype was assessed for anesthetic activity in tadpoles. Medicinal chemistry efforts identified four compounds with high potency and low toxicity in tadpoles, two were found to be effective novel anesthetics in mice. The authors demonstrate the first use of a high-throughput screen to successfully identify a novel anesthetic chemotype and show mammalian anesthetic activity for members of that chemotype.

MATERIALI
Numero di prodotto
Marchio
Descrizione del prodotto

Sigma-Aldrich
Acetonitrile, suitable for HPLC, gradient grade, ≥99.9%
Sigma-Aldrich
Acido trifluoroacetico, ReagentPlus®, 99%
Sigma-Aldrich
Acido trifluoroacetico, suitable for HPLC, ≥99.0%
Sigma-Aldrich
Diclorometano, suitable for HPLC, ≥99.8%, contains amylene as stabilizer
Sigma-Aldrich
Acetonitrile, HPLC Plus, ≥99.9%
Sigma-Aldrich
Diclorometano, contains 40-150 ppm amylene as stabilizer, ACS reagent, ≥99.5%
Sigma-Aldrich
Diclorometano, HPLC Plus, for HPLC, GC, and residue analysis, ≥99.9%, contains 50-150 ppm amylene as stabilizer
Sigma-Aldrich
Acetonitrile, ACS reagent, ≥99.5%
Sigma-Aldrich
Acetonitrile, anhydrous, 99.8%
Sigma-Aldrich
Acido trifluoroacetico, puriss. p.a., suitable for HPLC, ≥99.0% (GC)
Sigma-Aldrich
Trietilammina, ≥99.5%
Sigma-Aldrich
Acetonitrile, suitable for HPLC, gradient grade, ≥99.9%
Sigma-Aldrich
Trietilammina, ≥99%
Sigma-Aldrich
Acido trifluoroacetico, ≥99%, for protein sequencing
Sigma-Aldrich
Trietilammina, BioUltra, ≥99.5% (GC)
Sigma-Aldrich
Diclorometano, ACS reagent, ≥99.5%, contains 40-150 ppm amylene as stabilizer
Sigma-Aldrich
Trietilammina, puriss. p.a., ≥99.5% (GC)
Supelco
Diclorometano, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
Acetonitrile, biotech. grade, ≥99.93%
Sigma-Aldrich
Acetonitrile, electronic grade, 99.999% trace metals basis
Supelco
Acido trifluoroacetico, analytical standard
Supelco
Diclorometano, analytical standard
Sigma-Aldrich
Trietilammina, for amino acid analysis, ≥99.5% (GC)
Sigma-Aldrich
Diclorometano, ACS reagent, ≥99.5%, contains 40-150 ppm amylene as stabilizer
Sigma-Aldrich
Acetonitrile, suitable for DNA synthesis, ≥99.9% (GC)
Supelco
Acetonitrile, Pharmaceutical Secondary Standard; Certified Reference Material
Supelco
Acetonitrile, analytical standard
Sigma-Aldrich
Trietilammina, ≥99.5%
Sigma-Aldrich
Acetonitrile, ReagentPlus®, 99%
Supelco
Trietilammina, analytical standard