Passa al contenuto
Merck

In vivo two-photon imaging of structural dynamics in the spinal dorsal horn in an inflammatory pain model.

The European journal of neuroscience (2015-02-04)
Shinji Matsumura, Wataru Taniguchi, Kazuhiko Nishida, Terumasa Nakatsuka, Seiji Ito
ABSTRACT

Two-photon microscopy imaging has recently been applied to the brain to clarify functional and structural synaptic plasticity in adult neural circuits. Whereas the pain system in the spinal cord is phylogenetically primitive and easily exhibits behavioral changes such as hyperalgesia in response to inflammation, the structural dynamics of dendrites has not been analysed in the spinal cord mainly due to tissue movements associated with breathing and heart beats. Here we present experimental procedures to prepare the spinal cord sufficiently to follow morphological changes of neuronal processes in vivo by using two-photon microscopy and transgenic mice expressing fluorescent protein specific to the nervous system. Structural changes such as the formation of spine-like structures and swelling of dendrites were observed in the spinal dorsal horn within 30 min after the multiple-site injections of complete Freund's adjuvant (a chemical irritant) to a leg, and these changes continued for 5 h. Both AMPA and N-methyl-D-aspartate receptor antagonists, and gabapentin, a presynaptic Ca(2+) channel blocker, completely suppressed the inflammation-induced structural changes in the dendrites in the spinal dorsal horn. The present study first demonstrated by in vivo two-photon microscopy imaging that structural synaptic plasticity occurred in the spinal dorsal horn immediately after the injection of complete Freund's adjuvant and may be involved in inflammatory pain. Furthermore, acute inflammation-associated structural changes in the spinal dorsal horn were shown to be mediated by glutamate receptor activation.

MATERIALI
Numero di prodotto
Marchio
Descrizione del prodotto

Sigma-Aldrich
Sodio cloruro, Molecular Biology, DNase, RNase, and protease, none detected, ≥99% (titration)
Sigma-Aldrich
Sodio cloruro, 5 M in H2O, BioReagent, Molecular Biology, suitable for cell culture
Sigma-Aldrich
Sodio cloruro, BioXtra, ≥99.5% (AT)
Sigma-Aldrich
Sodio cloruro, BioReagent, suitable for cell culture, suitable for insect cell culture, suitable for plant cell culture, ≥99%
Sigma-Aldrich
Sodio cloruro, 0.9% in water, BioXtra, suitable for cell culture
Sigma-Aldrich
Sodio cloruro, 5 M
SAFC
Sodio cloruro, 5 M
Sigma-Aldrich
Sodio cloruro, BioUltra, Molecular Biology, ≥99.5% (AT)
Sigma-Aldrich
Sodio cloruro, meets analytical specification of Ph. Eur., BP, USP, 99.0-100.5%
Sigma-Aldrich
Sodio cloruro, BioUltra, Molecular Biology, ~5 M in H2O
Sigma-Aldrich
Sodio cloruro, 99.999% trace metals basis
Supelco
Sodio cloruro, Pharmaceutical Secondary Standard; Certified Reference Material
Supelco
Sodio cloruro, reference material for titrimetry, certified by BAM, >99.5%
Sigma-Aldrich
Potassium D-gluconate, ≥99% (HPLC)
Sigma-Aldrich
Potassium gluconate, 97.0-103.0% dry basis, meets USP testing specifications
Sigma-Aldrich
Sodio cloruro, 0.85%
Sigma-Aldrich
Sodio cloruro, BioPerformance Certified, ≥99% (titration), suitable for insect cell culture, suitable for plant cell culture
Sigma-Aldrich
Sodio cloruro, tested according to Ph. Eur.
Sigma-Aldrich
Anticorpo anti-PSD-95 (Post Synaptic Density Protein 95), clone 6G6-1C9, clone 6G6-1C9, Chemicon®, from mouse
Supelco
Potassium gluconate, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
DNQX, ≥98% (TLC)
USP
Potassium gluconate, United States Pharmacopeia (USP) Reference Standard
Sigma-Aldrich
Sodio cloruro, tablet
Sigma-Aldrich
Sodium chloride-35Cl, 99 atom % 35Cl
Sigma-Aldrich
Sodio cloruro, random crystals, 99.9% trace metals basis
Sigma-Aldrich
Sodio cloruro, AnhydroBeads, −10 mesh, 99.999% trace metals basis
Supelco
4-tert-Octylphenol monoethoxylate, 10 μg/mL in acetone, analytical standard