Todas las fotos(1)

D6429

Sigma-Aldrich

Dulbecco′s Modified Eagle′s Medium - high glucose

With 4500 mg/L glucose, L-glutamine, sodium pyruvate, and sodium bicarbonate, liquid, sterile-filtered, suitable for cell culture

Sinónimos:
DME, DMEM

Nivel de calidad

400

esterilidad

sterile-filtered

formulario

liquid

aplicaciones

cell culture | mammalian: suitable

impurezas

endotoxin, tested

componentes

glucose: high
sodium pyruvate: yes
HEPES: no
NaHCO3: yes
L-glutamine: yes
phenol red: yes

enviado en

ambient

temp. de almacenamiento

2-8°C

¿Está buscando productos similares? Visit Guía de comparación de productos

Categorías relacionadas

Descripción general

This DMEM-Hi glucose medium is a 1x complete medium with sodium pyruvate added. It also differs from the original DMEM-Hi formulation wherein pyridoxine is substituted for pyridoxal. Pyridoxal is an unstable component of media.

Aplicación

Dulbecco′s Modified Eagle′s Medium - high glucose has been used for cell culture.
Dulbecco′s Modified Eagle′s Medium (DMEM) is a modification of Basal Medium Eagle (BME) that contains four-fold concentrations of the amino acids and vitamins. The original formulation contained 1000 mg/L of glucose and was used to culture embryonic mouse cells. Since then, it has been modified in several ways to support primary cultures of mouse and chicken cells, as well as a variety of normal and transformed cells. Each of these media offers a different combination of L-glutamine and sodium pyruvate. Additionally, the glucose levels have been raised to 4500 mg/L, contributing to the name "DMEM/High".

Ligadura / enlace

Need FBS? We can assist with your serum planning. Please visit the Serum Planner for more information.

Código de clase de almacenamiento

12 - Non Combustible Liquids

WGK

WGK 1

Punto de inflamabilidad F

Not applicable

Punto de inflamabilidad C

Not applicable

Certificado de Análisis

Certificado de origen

Neuraminidase receptor binding variants of human influenza A(H3N2) viruses resulting from substitution of aspartic acid 151 in the catalytic site: a role in virus attachment?
Lin YP, et al.
Journal of Virology, 84(13), 6769-6781 (2010)
Kazuhiro Ikeda et al.
Scientific reports, 7(1), 2850-2850 (2017-06-08)
Human pluripotent stem cells are a potentially powerful cellular resource for application in regenerative medicine. Because such applications require large numbers of human pluripotent stem cell-derived cells, a scalable culture system of human pluripotent stem cell needs to be developed.
Mouse sphingosine kinase isoforms SPHK1a and SPHK1b differ in enzymatic traits including stability, localization, modification, and oligomerization.
Kihara A, et al.
The Journal of Biological Chemistry, 281(7), 4532-4539 (2006)
Mikiko Fukuda et al.
The Journal of reproduction and development, 62(1), 121-125 (2015-11-26)
Production of knockout mice using targeted embryonic stem cells (ESCs) is a powerful approach for investigating the function of specific genes in vivo. Although the protocol for gene targeting via homologous recombination (HR) in ESCs is already well established, the
Kenta Imai et al.
Journal of cell science, 129(20), 3781-3791 (2016-09-03)
Autophagy is an intracellular degradation pathway conserved in eukaryotes. Among core autophagy-related (Atg) proteins, mammalian Atg9A is the sole multi-spanning transmembrane protein, and both of its N- and C-terminal domains are exposed to the cytoplasm. It is known that Atg9A

Artículos

Cell Culture Protocol 5: Subculture of Suspension Cell Lines

Cell culture protocol for passaging and splitting suspension cell lines

Validation of RNAi Knockdown Using Multiple Reaction Monitoring and Protein-AQUA

The field of proteomics is continually looking for new ways to investigate protein dynamics within complex biological samples. Recently, many researchers have begun to use RNA interference (RNAi) as a method of manipulating protein levels within their samples, but the ability to accurately determine these protein amounts remains a challenge. Fortunately, over the past decade, the field of proteomics has witnessed significant advances in the area of mass spectrometry. These advances, both in instrumentation and methodology, are providing researchers with sensitive assays for both identification and quantification of proteins within complex samples. This discussion will highlight some of these methodologies, namely the use of Multiple Reaction Monitoring (MRM) and Protein-AQUA.

Nuestro equipo de científicos tiene experiencia en todas las áreas de investigación: Ciencias de la vida, Ciencia de los materiales, Síntesis química, Cromatografía, Analítica y muchas otras.

Póngase en contacto con el Servicio técnico