Natural and artificial cystine knots for assembly of homo- and heterotrimeric collagen models.

Antioxidants & redox signaling (2007-10-27)
Cyril Boulègue, Hans-Jürgen Musiol, Marion G Götz, Christian Renner, Luis Moroder
RESUMEN

Native collagens are molecules that are difficult to handle because of their high tendency towards aggregation and denaturation. It was discovered early on that synthetic collagenous peptides are more amenable to conformational characterization and thus can serve as useful models for structural and functional studies. Single-stranded collagenous peptides of high propensity to self-associate into triple-helical trimers were used for this purpose as well as interchain-crosslinked homotrimers assembled on synthetic scaffolds. With the growing knowledge of the biosynthetic pathways of natural collagens and the importance of their interchain disulfide crosslinks, which stabilize the triple-helical structure, native as well as de novo designed cystine knots have gained increasing attention in the assembly of triple-stranded collagen peptides. In addition, natural sequences of collagens were incorporated in order to biophysically characterize their functional epitopes. This review is focused on the methods developed over the years, and future perspectives for the production of collagen-mimicking synthetic and recombinant triple-helical homo- and heterotrimers.

MATERIALES
Referencia del producto
Marca
Descripción del producto

Sigma-Aldrich
L-Cystine, ≥98% (TLC), crystalline
Sigma-Aldrich
L-Cystine, from non-animal source, meets EP testing specifications, suitable for cell culture, 98.5-101.0%
Sigma-Aldrich
L-Cystine, ≥99.7% (TLC)
SAFC
L-Cystine
SAFC
L-Cystine
Supelco
L-Cystine, Pharmaceutical Secondary Standard; Certified Reference Material
Supelco
L-Cystine, certified reference material, TraceCERT®
Cystine, European Pharmacopoeia (EP) Reference Standard
Sigma-Aldrich
L-Cystine, produced by Wacker Chemie AG, Burghausen, Germany, ≥98.5%