Przejdź do zawartości
Merck

Micronization increases the bioaccessibility of polyphenols from granulometrically separated olive pomace fractions.

Food chemistry (2020-12-06)
Caroline Sefrin Speroni, Daniela Rigo Guerra, Ana Betine Beutinger Bender, Jessica Stiebe, Cristiano Augusto Ballus, Leila Picolli da Silva, Jesús Lozano-Sánchez, Tatiana Emanuelli
ABSTRAKT

The effect of micronization of granulometrically fractionated olive pomace (OP) on the bioaccessibility of polyphenols and the antioxidant capacity was investigated during sequential in vitro static digestion. Crude OP was fractionated in a 2-mm sieve (F1: > 2 mm; F2: < 2 mm) and then micronized (300 r min-1, 5 h) generating F1AG (17.8 μm) and F2AG (15.6 μm). Micronization increased the release of hydroxytyrosol, oleuropein, caffeic acid, and decarboxymethyl oleuropein aglycone (3,4-DHPEA-EDA) in the salivary and gastric phase, beyond luteolin in the gastric phase. Micronization also increased the intestinal bioaccessibility of hydroxytyrosol, 3,4-DHPEA-EDA, oleuropein, luteolin, and apigenin; it was more effective for F2AG than F1AG. Micronized samples increased antioxidant capacity in the gastric phase. F2AG exhibited the highest antioxidant capacity in the insoluble intestinal fraction. Thus, micronization can be further exploited to improve the nutraceutical properties of OP by increasing the bioaccessibility and antioxidant capacity of phenolic compounds.

MATERIAŁY
Numer produktu
Marka
Opis produktu

Millipore
Bile salts, suitable for microbiology
Sigma-Aldrich
α-Amylase from porcine pancreas, PMSF Treated, Type I-A, saline suspension, ≥1000 units/mg protein (E1%/280)
Sigma-Aldrich
Pepsin from porcine gastric mucosa, powder, ≥250 units/mg solid
Sigma-Aldrich
(±)-6-Hydroxy-2,5,7,8-tetramethylchromane-2-carboxylic acid, 97%
Sigma-Aldrich
Pancreatin from porcine pancreas, 8 × USP specifications