Przejdź do zawartości
Merck

Regulation of mitophagy by the NSL complex underlies genetic risk for Parkinson's disease at 16q11.2 and MAPT H1 loci.

Brain : a journal of neurology (2022-09-09)
Marc P M Soutar, Daniela Melandri, Benjamin O'Callaghan, Emily Annuario, Amy E Monaghan, Natalie J Welsh, Karishma D'Sa, Sebastian Guelfi, David Zhang, Alan Pittman, Daniah Trabzuni, Anouk H A Verboven, Kylie S Pan, Demis A Kia, Magda Bictash, Sonia Gandhi, Henry Houlden, Mark R Cookson, Nael Nadif Kasri, Nicholas W Wood, Andrew B Singleton, John Hardy, Paul J Whiting, Cornelis Blauwendraat, Alexander J Whitworth, Claudia Manzoni, Mina Ryten, Patrick A Lewis, Hélène Plun-Favreau
ABSTRAKT

Parkinson's disease is a common incurable neurodegenerative disease. The identification of genetic variants via genome-wide association studies has considerably advanced our understanding of the Parkinson's disease genetic risk. Understanding the functional significance of the risk loci is now a critical step towards translating these genetic advances into an enhanced biological understanding of the disease. Impaired mitophagy is a key causative pathway in familial Parkinson's disease, but its relevance to idiopathic Parkinson's disease is unclear. We used a mitophagy screening assay to evaluate the functional significance of risk genes identified through genome-wide association studies. We identified two new regulators of PINK1-dependent mitophagy initiation, KAT8 and KANSL1, previously shown to modulate lysine acetylation. These findings suggest PINK1-mitophagy is a contributing factor to idiopathic Parkinson's disease. KANSL1 is located on chromosome 17q21 where the risk associated gene has long been considered to be MAPT. While our data do not exclude a possible association between the MAPT gene and Parkinson's disease, they provide strong evidence that KANSL1 plays a crucial role in the disease. Finally, these results enrich our understanding of physiological events regulating mitophagy and establish a novel pathway for drug targeting in neurodegeneration.

MATERIAŁY
Numer produktu
Marka
Opis produktu

Millipore
ANTI-FLAG® antibody produced in rabbit, affinity isolated antibody, buffered aqueous solution
Sigma-Aldrich
Anti-KANSL1 antibody produced in rabbit, Prestige Antibodies® Powered by Atlas Antibodies, affinity isolated antibody, buffered aqueous glycerol solution
Sigma-Aldrich
ANTI-FLAG® M2 antibody, Mouse monoclonal, clone M2, purified immunoglobulin (Purified IgG1 subclass), buffered aqueous solution (10 mM sodium phosphate, 150 mM NaCl, pH 7.4, containing 0.02% sodium azide)
Sigma-Aldrich
Oligomycin from Streptomyces diastatochromogenes, ≥90% total oligomycins basis (HPLC)
Sigma-Aldrich
Antimycin A from Streptomyces sp.
Sigma-Aldrich
Anti-phospho-Ubiquitin (Ser65), from rabbit, purified by affinity chromatography