Przejdź do zawartości
Merck

Cotransport of multi-walled carbon nanotubes and titanium dioxide nanoparticles in saturated porous media.

Environmental pollution (Barking, Essex : 1987) (2014-09-10)
Xueting Wang, Li Cai, Peng Han, Daohui Lin, Hyunjung Kim, Meiping Tong
ABSTRAKT

The cotransport of multi-walled carbon nanotubes (MWCNTs) and nanoscaled titanium dioxide (nano-TiO2) in porous media were investigated in 1 and 10 mM NaCl at both pH 5 and 7. Nano-TiO2 decreased MWCNTs transport under all conditions. The increased MWCNTs deposition at pH 5 was due to MWCNTs deposition onto previously deposited nano-TiO2 and codeposition of nano-TiO2-MWCNTs aggregates; whereas, codeposition of nano-TiO2-MWCNTs aggregates contributed to the increased MWCNTs deposition at pH 7. MWCNTs increased nano-TiO2 transport under all conditions except in 10 mM NaCl at pH 5. MWCNTs facilitated transport drove to the increased nano-TiO2 transport in 1 mM NaCl at pH 5; whereas, competition of deposition sites and stabilization of nano-TiO2 by MWCNTs mainly caused the increased nano-TiO2 transport at pH 7. Although MWCNTs didn't affect nano-TiO2 breakthrough curve in 10 mM NaCl at pH 5, concurrent aggregation induced straining yet shifted nano-TiO2 retained profile from log-linear to hyper-exponential decreases.

MATERIAŁY
Numer produktu
Marka
Opis produktu

Sigma-Aldrich
Titanium, powder, −100 mesh, 99.7% trace metals basis
Sigma-Aldrich
Titanium, sponge, 1-20 mm, 99.5% trace metals basis
Sigma-Aldrich
Titanium, evaporation slug, diam. × L 6.3 mm × 6.3 mm, ≥99.99% trace metals basis
Sigma-Aldrich
Titanium, wire, diam. 0.5 mm, 99.99% trace metals basis
Sigma-Aldrich
Titanium, powder, <45 μm avg. part. size, 99.98% trace metals basis
Sigma-Aldrich
Titanium, foil, thickness 0.25 mm, 99.7% trace metals basis
Sigma-Aldrich
Titanium, foil, thickness 0.25 mm, 99.99% trace metals basis
Sigma-Aldrich
Titanium, foil, thickness 0.127 mm, ≥99.99% trace metals basis
Sigma-Aldrich
Titanium(IV) oxide, contains 1% Mn as dopant, nanopowder, <100 nm particle size (BET), ≥97%
Sigma-Aldrich
Titanium, foil, thickness 0.5 mm, 99.99% trace metals basis
Titanium, IRMM®, certified reference material, 0.1 mm foil
Sigma-Aldrich
Titanium(IV) oxide, nanopowder, 21 nm primary particle size (TEM), ≥99.5% trace metals basis
Sigma-Aldrich
Titanium, sputtering target, diam. × thickness 2.00 in. × 0.25 in., 99.995% trace metals basis
Sigma-Aldrich
Titanium(IV) oxide, nanowires, diam. × L ~100 nm × 10 μm
Sigma-Aldrich
Titanium(IV) oxide, nanowires, diam. × L ~10 nm × 10 μm
Titanium, rod, 500mm, diameter 2mm, as drawn, 99.99+%
Titanium, rod, 25mm, diameter 20mm, as drawn, 99.99+%
Titanium, rod, 500mm, diameter 3.0mm, annealed, 99.6+%
Titanium, tube, 200mm, outside diameter 9.5mm, inside diameter 8.2mm, wall thickness 0.65mm, annealed, 99.6+%
Titanium, tube, 100mm, outside diameter 6.35mm, inside diameter 4.57mm, wall thickness 0.89mm, annealed, 99.6+%
Titanium, tube, 1000mm, outside diameter 3.0mm, inside diameter 1.5mm, wall thickness 0.75mm, annealed, 99.6+%
Titanium, tube, 200mm, outside diameter 0.81mm, inside diameter 0.61mm, wall thickness 0.1mm, as drawn, 99.6+%
Titanium, rod, 50mm, diameter 8.0mm, as drawn, 99.99+%
Titanium, rod, 200mm, diameter 1.5mm, annealed, 99.6+%
Titanium, rod, 25mm, diameter 9.5mm, annealed, 99.99+%
Titanium, rod, 200mm, diameter 6mm, annealed, 99.6+%
Titanium, tube, 100mm, outside diameter 0.81mm, inside diameter 0.61mm, wall thickness 0.1mm, as drawn, 99.6+%
Titanium, tube, 200mm, outside diameter 6.35mm, inside diameter 4.57mm, wall thickness 0.89mm, annealed, 99.6+%
Titanium, tube, 1000mm, outside diameter 2.03mm, inside diameter 1.63mm, wall thickness 0.2mm, annealed, 99.6+%
Titanium, rod, 50mm, diameter 9.5mm, annealed, 99.99+%