Przejdź do zawartości
Merck

Efflux by small multidrug resistance proteins is inhibited by membrane-interactive helix-stapled peptides.

The Journal of biological chemistry (2014-11-27)
Kathrin Bellmann-Sickert, Tracy A Stone, Bradley E Poulsen, Charles M Deber
ABSTRAKT

Bacterial cell membranes contain several protein pumps that resist the toxic effects of drugs by efficiently extruding them. One family of these pumps, the small multidrug resistance proteins (SMRs), consists of proteins of about 110 residues that need to oligomerize to form a structural pathway for substrate extrusion. As such, SMR oligomerization sites should constitute viable targets for efflux inhibition, by disrupting protein-protein interactions between helical segments. To explore this proposition, we are using Hsmr, an SMR from Halobacter salinarum that dimerizes to extrude toxicants. Our previous work established that (i) Hsmr dimerization is mediated by a helix-helix interface in Hsmr transmembrane (TM) helix 4 (residues (90)GLALIVAGV(98)); and (ii) a peptide comprised of the full TM4(85-105) sequence inhibits Hsmr-mediated ethidium bromide efflux from bacterial cells. Here we define the minimal linear sequence for inhibitor activity (determined as TM4(88-100), and then "staple" this sequence via Grubbs metathesis to produce peptides typified by acetyl-A-(Sar)3-(88)VVGLXLIZXGVVV(100)-KKK-NH2 (X = 2-(4'-pentenyl)alanine at positions 92 and 96; Z = Val, Gly, or Asn at position 95)). The Asn(95) peptide displayed specific efflux inhibition and resensitization of Hsmr-expressing cells to ethidium bromide; and was non-hemolytic to human red blood cells. Stapling essentially prevented peptide degradation in blood plasma and liver homogenates versus an unstapled counterpart. The overall results confirm that the stapled analog of TM4(88-100) retains the structural complementarity required to disrupt the Hsmr TM4-TM4 locus in Hsmr, and portend the general validity of stapled peptides as therapeutics for the disruption of functional protein-protein interactions in membranes.

MATERIAŁY
Numer produktu
Marka
Opis produktu

Supelco
Acetonitrile(Neat), Pharmaceutical Secondary Standard; Certified Reference Material
Supelco
1,1-Dichloroethane, analytical standard, contains 100 ppm hydroquinone as stabilizer
Supelco
Residual Solvent - Acetonitrile(solution in DMSO), Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
Acetonitrile, anhydrous, 99.8%
Supelco
Trifluoroacetic acid, analytical standard
Supelco
Acetonitrile, analytical standard
Sigma-Aldrich
Acetonitrile, suitable for HPLC, gradient grade, ≥99.9%
Sigma-Aldrich
Acetonitrile, suitable for DNA synthesis, ≥99.9% (GC)
Sigma-Aldrich
Acetonitrile, electronic grade, 99.999% trace metals basis
Sigma-Aldrich
Trifluoroacetic acid, ReagentPlus®, 99%
Sigma-Aldrich
Acetonitrile, ReagentPlus®, 99%
Sigma-Aldrich
Trifluoroacetic acid, puriss. p.a., suitable for HPLC, ≥99.0% (GC)
Sigma-Aldrich
Trifluoroacetic acid, ≥99%, for protein sequencing
Sigma-Aldrich
Acetonitrile, ACS reagent, ≥99.5%
Sigma-Aldrich
Acetonitrile, biotech. grade, ≥99.93%
USP
Rozpuszczalnik resztkowy klasy 2 - acetonitryl, United States Pharmacopeia (USP) Reference Standard
Sigma-Aldrich
Acetonitrile, suitable for HPLC, gradient grade, ≥99.9%
Sigma-Aldrich
Trifluoroacetic acid, suitable for HPLC, ≥99.0%
Sigma-Aldrich
Acetonitrile, HPLC Plus, ≥99.9%