Przejdź do zawartości
Merck
  • Daily rhythms of serotonin metabolism and the expression of clock genes in suprachiasmatic nucleus of rotenone-induced Parkinson's disease male Wistar rat model and effect of melatonin administration.

Daily rhythms of serotonin metabolism and the expression of clock genes in suprachiasmatic nucleus of rotenone-induced Parkinson's disease male Wistar rat model and effect of melatonin administration.

Biogerontology (2014-11-29)
Ushodaya Mattam, Anita Jagota
ABSTRAKT

The circadian system in suprachiasmatic nucleus (SCN) involves regulated serotonin levels and coordinated expression of various clock genes. To understand circadian disfunction in the age-related neurodegenerative disorder Parkinson's disease (PD), the rotenone-induced PD (RIPD) male Wistar rat model was used. The alterations in the rhythmic dynamic equilibrium of interactions between the various components of serotonin metabolism and the molecular clock were measured. There was significant decrease in the mean 24 h levels of tryptophan, 5-hydroxytryptophan (5-HTP), serotonin (5-HT), N-acetyl serotonin (NAS) and melatonin (MEL) by approximately 63, 51, 76 and 96% respectively ( p ≤ 0.05). However significant increase in 5-methoxy indole acetic acid (5-MIAA), 5-methoxy tryptophol (5-MTOH), 5-hydroxy tryptophol (5-HTOH) indicated increased serotonin catabolism with the abolition of daily rhythms of MEL, 5-HTP and 5-MIAA in RIPD. 24 h mean levels of rPer1, rCry1, rBmal1 reduced by about 0.5, 0.74 and 0.39-fold and increased for rPer2 by about 1.7-fold. The daily pulse of rPer2, rCry1, rCry2 and rBmal1 significantly decreased by 0.36, 0.6, 0.14, 0.1 and 0.2-fold. As melatonin, an antioxidant and an endogenous synchronizer of rhythm declined in RIPD male Wistar rat model, the effects of melatonin-administration on the rhythmic expression of various clock genes were studied. Interestingly, melatonin-administration resulted in restoration of the phase of rPer1 daily rhythm in RIPD indicating differential sensitivity of various clock components towards melatonin. The animals which were administered both rotenone and MEL for 48 days interestingly showed neuroprotective effects in dark phase on correlations between expression of various genes.

MATERIAŁY
Numer produktu
Marka
Opis produktu

Supelco
Sucrose, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
Sucrose, puriss., meets analytical specification of Ph. Eur., BP, NF
Sigma-Aldrich
Sucrose, BioUltra, Molecular Biology, ≥99.5% (HPLC)
Sigma-Aldrich
DL-Tyrosine, 99%
Sigma-Aldrich
Sucrose, ≥99.5% (GC)
Sigma-Aldrich
Sucrose, ≥99.5% (GC), BioReagent, suitable for cell culture, suitable for insect cell culture
Sigma-Aldrich
Sucrose, ≥99.5% (GC), Grade II, suitable for plant cell culture
Sigma-Aldrich
Sucrose, ≥99.5% (GC), BioXtra
Sigma-Aldrich
Sucrose, ACS reagent
Sigma-Aldrich
Sucrose, ≥99% (GC), Grade I, suitable for plant cell culture
Sigma-Aldrich
Sucrose, ≥99.5% (GC)
Sigma-Aldrich
Sucrose, meets USP testing specifications
Millipore
Sucrose, suitable for microbiology, ACS reagent, ≥99.0%
USP
Sucrose, United States Pharmacopeia (USP) Reference Standard
Supelco
Sucrose, analytical standard, for enzymatic assay kit SCA20
Sucrose, European Pharmacopoeia (EP) Reference Standard
Tyrosine, European Pharmacopoeia (EP) Reference Standard
Sigma-Aldrich
Sucrose, Molecular Biology, ≥99.5% (GC)
Supelco
Meprobamate solution, 1.0 mg/mL in methanol, ampule of 1 mL, certified reference material, Cerilliant®