Przejdź do zawartości
Merck

Impact of chronic hypoxemia on blood flow to the brain, heart, and adrenal gland in the late-gestation IUGR sheep fetus.

American journal of physiology. Regulatory, integrative and comparative physiology (2014-11-28)
Rajan Poudel, I Caroline McMillen, Stacey L Dunn, Song Zhang, Janna L Morrison
ABSTRAKT

In the fetus, there is a redistribution of cardiac output in response to acute hypoxemia, to maintain perfusion of key organs, including the brain, heart, and adrenal glands. There may be a similar redistribution of cardiac output in the chronically hypoxemic, intrauterine growth-restricted fetus. Surgical removal of uterine caruncles in nonpregnant ewe results in the restriction of placental growth (PR) and intrauterine growth. Vascular catheters were implanted in seven control and six PR fetal sheep, and blood flow to organs was determined using microspheres. Placental and fetal weight was significantly reduced in the PR group. Despite an increase in the relative brain weight in the PR group, there was no difference in blood flow to the brain between the groups, although PR fetuses had higher blood flow to the temporal lobe. Adrenal blood flow was significantly higher in PR fetuses, and there was a direct relationship between mean gestational PaO2 and blood flow to the adrenal gland. There was no change in blood flow, but a decrease in oxygen and glucose delivery to the heart in the PR fetuses. In another group, there was a decrease in femoral artery blood flow in the PR compared with the Control group, and this may support blood flow changes to the adrenal and temporal lobe. In contrast to the response to acute hypoxemia, these data show that there is a redistribution of blood flow to the adrenals and temporal lobe, but not the heart or whole brain, in chronically hypoxemic PR fetuses in late gestation.

MATERIAŁY
Numer produktu
Marka
Opis produktu

Supelco
Hydrocortisone, Pharmaceutical Secondary Standard; Certified Reference Material
Hydrocortisone, European Pharmacopoeia (EP) Reference Standard
Sigma-Aldrich
2-Ethoxyethyl acetate, 98%
Sigma-Aldrich
Hydrocortisone, ≥98% (HPLC)
Sigma-Aldrich
Hydrocortisone, meets USP testing specifications
Sigma-Aldrich
Hydrocortisone, BioReagent, suitable for cell culture
Sigma-Aldrich
Hydrocortisone, γ-irradiated, powder, BioXtra, suitable for cell culture
Hydrocortisone, British Pharmacopoeia (BP) Assay Standard
USP
Hydrocortisone, United States Pharmacopeia (USP) Reference Standard
Supelco
Dichloromethane, Selectophore, ≥99.5%
Sigma-Aldrich
Dichloromethane, suitable for HPLC, ≥99.9%, contains 40-150 ppm amylene as stabilizer
Supelco
Methylene Chloride, Pharmaceutical Secondary Standard; Certified Reference Material
Supelco
Dichloromethane, analytical standard
Sigma-Aldrich
Dichloromethane, ACS reagent, ≥99.5%, contains 40-150 ppm amylene as stabilizer
Hydrocortisone for peak identification, European Pharmacopoeia (EP) Reference Standard
Sigma-Aldrich
Dichloromethane, ACS reagent, ≥99.5%, contains 40-150 ppm amylene as stabilizer
Sigma-Aldrich
Dichloromethane, contains 40-150 ppm amylene as stabilizer, ACS reagent, ≥99.5%
Sigma-Aldrich
Dichloromethane, biotech. grade, 99.9%, contains 40-150 ppm amylene as stabilizer
Sigma-Aldrich
Dichloromethane, suitable for HPLC, ≥99.8%, contains amylene as stabilizer
Sigma-Aldrich
Dichloromethane, HPLC Plus, for HPLC, GC, and residue analysis, ≥99.9%, contains 50-150 ppm amylene as stabilizer