跳转至内容
Merck

预设计siRNA

MISSION®预设计siRNA系与默克公司独家合作,采用独有的Rosetta Inpharmatics siRNA设计算法创建。Rosetta siRNA设计算法利用位点特异性打分矩阵和种子区域知识,预测目标基因最具效率和特异性的序列。该算法的规则基于超过三年的基因沉默实验实证数据开发。

产品优势

  • 同类产品之中的佼佼者,基因沉默效果有保障
  • 有效敲低低丰度信使
  • 使用 11 阳性对照 siRNA 简化转染优化
  • 使用 8 阴性对照 siRNA 区分序列特异性沉默和非特异性效应
  • 数百种经过功能验证的预设计siRNA

产品特性

  • 物种:人类、小鼠和大鼠
  • 规格:2 (10 nmol)、5 (25 nmol)和10 (50 nmol) OD
  • 纯化方法:脱盐或HPLC
  • 序列形式:具有 dTdT 突出端的 21mer 双链体
  • 质检方法:100%质谱分析*
  • 形式:以管装干粉形式提供

*部分生产基地可能采用PAGE方法评估siRNA双链体。

预设计产品保证

以 ≥30 nM 的浓度转染时,在三份靶向同一基因的 MISSION® 预设计siRNA中,至少两份可将培养细胞中的靶标 mRNA 水平降低 75%。如果其中两份siRNA未能将目标基因敲低 75%,我们将免费再提供三份该基因的 siRNA。如果无法继续提供该基因的siRNA或所有siRNA均未能将目标基因敲低 75%,我们将原价退款。
上述保证需提供有关转染效率的适当支持数据。转染效率的适当支持数据包括 qPCR 数据,将转染≥30 nM 的 MISSION 阳性对照 siRNA(GAPDH、MAPK1、TP53 等)的靶标 mRNA 水平与适当的阴性对照(例如模拟转染、加扰siRNA 序列或 MISSION 通用阴性对照 siRNA)进行对比,证明靶标 RNA 的敲低率小于 75%。
由于抗体和蛋白质半衰期不定,我们不接受基于蛋白质的检测方法数据。

 产品库

一种流行的混合形式是 4 种 5 nmol 双链,混合到一支管中(20 nmol 混合);另一种形式也是 4 种 5 nmol 双链,但每种单管装(20 nmol 单装)。即便如此,我们先进的液体处理器还允许更多组合。如需针对您特定的需求进行可行性评定,请电邮[email protected]

经验证的siRNA

许多常见基因靶标已经过 ≥75% mRNA 敲低验证图 1提供了数据示例以及常订购的经验证siRNA清单表(按基因符号)。经验证的siRNA适于转染优化或用作阳性对照。

用30 nM 浓度的预设计siRNA 转染 HeLa 细胞。

图 1.用30 nM 浓度的预设计siRNA 转染 HeLa 细胞。转染后 48 小时,通过 qPCR 测定剩余基因表达水平的百分比(相对于模拟物)。数据为四份生物学重复的均值。

经验证的siRNA(按基因符号排序)
ABCC1CDC7DYRK1AIGFBP4MLH1PIK3R4PRPS1SIK2
ACP1CDC73DYRK1BIL6STMSH2PIM2PRSS23SLC16A1
ACP2CDK1EEF2KILKMST4PIN1PSEN1SLC25A17
ACVR1CDK11BEIF2AK4IMPA2MTA2PINK1PSEN2SLC2A1
ACVR1BCDK17EIF4A3INPPL1MTM1PIP4K2BPSMA7SLC30A1
ADAM10CDK2EMR2IP6K1MTMR1PIP5K1APSMB4SLK
ADAM12CDK4ENPP1IP6K2MTMR2PKN2PSMB5SMU1
ADAM15CDK5EPHA5IPMKMTMR3PLAURPSMB6SNRK
ADIPOR1CDK6EPHB4IRAK1MTMR6PLK1PSPHSORT1
ADIPOR2CDK7F3IRAK4MTORPLK4PTK2SRC
ADRBK1CDK8FADDITPK1NADKPOLKPTP4A1SRPK1
AKT1CDK9FDFT1JAK1NCSTNPPAP2CPTPLAST7
AKT2CDKL5FERJUNDNDRG1PPATPTPN1STAT3
ALPLCDKN1BFMNL1JUPNEDD8PPM1DPTPN11STK16
APPCDKN3FURINLANCL1NEK2PPME1PTPN12STK24
ARAFCELSR1FYNLATS1NEK6PPP1CAPTPN14STK3
ARHGDIACERKFZD4LDHANEK7PPP1CBPTPN23STYX
ATF1CHEK1FZD5LEPRNEK9PPP1CCPTPN9TAOK1
ATMCHUKFZD6LGALS3NET1PPP1R11PTPRETAOK3
ATP6V0CCKS2GLTSCR2LIMK2NF1PPP1R12APTPRFTBK1
ATRCLPPGPRC5ALRP5NLNPPP1R2PTPRJTEK
AURKBCPEGRB2LRP6NME1PPP1R3CPTPRKTESK1
AXIN1CPT1AGRK6LTBRNME1-NME2PPP1R7PTPRSTFRC
AXLCRKLGRNLYNNME2PPP2CARAB22ATGFBR1
BACE1CSKGSK3BMAD2L1NOTCH2PPP2CBRAF1TGM1
BACE2CSNK2A1HADHBMANFNPR1PPP2R1ARAP1BTGM2
BADCTNNB1HBEGFMAP2K2NR1H2PPP2R2ARARGTHRA
BAG1CTSAHCG 1757335MAP2K5NR1H3PPP2R5ARB1TK1
BCAT1CXCR4HDAC1MAP3K3NR2C2PPP2R5DRELATKT
BIRC5CXCR7HDAC2MAP3K4NR2F2PPP2R5ERHOATLR4
BMP6CYLDHECTD1MAPK14NUP85PPP3CCRIOK3TM4SF1
BMPR1ADAD1HIPK2MAPK3OCRLPPP5CRIPK1TNFRSF10B
BRAFDAPK3HIPK3MAPK6OXSR1PPP6CRIPK2TRIM28
BUB1DCNHPRT1MAPK8PAK2PREPLRNF10TWF1
BUB1BDDR1HSPA1AMAPK9PASKPRKACARNF5TYRO3
CASKDGKAHSPA1BMAPKAPK5PBKPRKACBROCK1VEGFC
CCL2DMBT1HSPB8MARK3PCNAPRKAG1ROCK2VIPR1
CCNA2DNMT1HTRA1MASTLPCSK9PRKAR1AROR2VRK2
CCNCDUSP10HUNKMBTPS1PDE8APRKAR2ARPS6KA3WNK1
CCND1DUSP11ICAM1MELKPDGFRBPRKCARPS6KA4YES1
CCT2DUSP12ICKMETPDK1PRKCIRPS6KB1ZMPSTE24
CD63DVL2IGF1RMIFPGK1PRKCZRYK 
CD82DVL3IGF2RMINPP1PHPT1PRKDCSHC1 

材料

抱歉,发生了意外错误

Response not successful: Received status code 500

精选引用文献

1.
Yang X, Sierant M, Janicka M, Peczek L, Martinez C, Hassell T, Li N, Li X, Wang T, Nawrot B. 2012. Gene Silencing Activity of siRNA Molecules Containing Phosphorodithioate Substitutions. ACS Chem. Biol.. 7(7):1214-1220. https://doi.org/10.1021/cb300078e
2.
Salma J, McDermott JC. 2012. Suppression of a MEF2-KLF6 Survival Pathway by PKA Signaling Promotes Apoptosis in Embryonic Hippocampal Neurons. Journal of Neuroscience. 32(8):2790-2803. https://doi.org/10.1523/jneurosci.3609-11.2012
3.
Gilot D, Le Meur N, Giudicelli F, Le Vée M, Lagadic-Gossmann D, Théret N, Fardel O. RNAi-Based Screening Identifies Kinases Interfering with Dioxin-Mediated Up-Regulation of CYP1A1 Activity. PLoS ONE. 6(3):e18261. https://doi.org/10.1371/journal.pone.0018261
4.
Raab M, Kappel S, Krämer A, Sanhaji M, Matthess Y, Kurunci-Csacsko E, Calzada-Wack J, Rathkolb B, Rozman J, Adler T, et al. 2011. Toxicity modelling of Plk1-targeted therapies in genetically engineered mice and cultured primary mammalian cells. Nat Commun. 2(1): https://doi.org/10.1038/ncomms1395
5.
Chia KM, Liu J, Francis GD, Naderi A. 2011. A Feedback Loop between Androgen Receptor and ERK Signaling in Estrogen Receptor-Negative Breast Cancer. Neoplasia. 13(2):154-166. https://doi.org/10.1593/neo.101324
6.
Ramachandran V, Arumugam T, Langley R, Hwang RF, Vivas-Mejia P, Sood AK, Lopez-Berestein G, Logsdon CD. The ADMR Receptor Mediates the Effects of Adrenomedullin on Pancreatic Cancer Cells and on Cells of the Tumor Microenvironment. PLoS ONE. 4(10):e7502. https://doi.org/10.1371/journal.pone.0007502
7.
Santra MK, Wajapeyee N, Green MR. 2009. F-box protein FBXO31 mediates cyclin D1 degradation to induce G1 arrest after DNA damage. Nature. 459(7247):722-725. https://doi.org/10.1038/nature08011
8.
Meng W, Mushika Y, Ichii T, Takeichi M. 2008. Anchorage of Microtubule Minus Ends to Adherens Junctions Regulates Epithelial Cell-Cell Contacts. Cell. 135(5):948-959. https://doi.org/10.1016/j.cell.2008.09.040
9.
Matsubara T, Kida K, Yamaguchi A, Hata K, Ichida F, Meguro H, Aburatani H, Nishimura R, Yoneda T. 2008. BMP2 Regulates Osterix through Msx2 and Runx2 during Osteoblast Differentiation. J. Biol. Chem.. 283(43):29119-29125. https://doi.org/10.1074/jbc.m801774200
10.
Zhou H, Xu M, Huang Q, Gates AT, Zhang XD, Castle JC, Stec E, Ferrer M, Strulovici B, Hazuda DJ, et al. 2008. Genome-Scale RNAi Screen for Host Factors Required for HIV Replication. Cell Host & Microbe. 4(5):495-504. https://doi.org/10.1016/j.chom.2008.10.004
11.
Espeseth AS, Huang Q, Gates A, Xu M, Yu Y, Simon AJ, Shi X, Zhang X, Hodor P, Stone DJ, et al. 2006. A genome wide analysis of ubiquitin ligases in APP processing identifies a novel regulator of BACE1 mRNA levels. Molecular and Cellular Neuroscience. 33(3):227-235. https://doi.org/10.1016/j.mcn.2006.07.003
12.
Bartz SR, Zhang Z, Burchard J, Imakura M, Martin M, Palmieri A, Needham R, Guo J, Gordon M, Chung N, et al. 2006. Small Interfering RNA Screens Reveal Enhanced Cisplatin Cytotoxicity in Tumor Cells Having both BRCA Network and TP53 Disruptions. MCB. 26(24):9377-9386. https://doi.org/10.1128/mcb.01229-06
13.
Majercak J, Ray WJ, Espeseth A, Simon A, Shi X, Wolffe C, Getty K, Marine S, Stec E, Ferrer M, et al. 2006. LRRTM3 promotes processing of amyloid-precursor protein by BACE1 and is a positional candidate gene for late-onset Alzheimer's disease. Proceedings of the National Academy of Sciences. 103(47):17967-17972. https://doi.org/10.1073/pnas.0605461103

如果需要其他帮助,请通过[email protected]咨询我们的技术服务组。

MISSION是德国默克(Merck KGaA, Darmstadt, Germany)及/或其附属公司的商标。标签许可证

登录以继续。

如要继续阅读,请登录或创建帐户。

暂无帐户?