Saltar al contenido
MilliporeSigma
  • MiR-16 targets Bcl-2 in paclitaxel-resistant lung cancer cells and overexpression of miR-16 along with miR-17 causes unprecedented sensitivity by simultaneously modulating autophagy and apoptosis.

MiR-16 targets Bcl-2 in paclitaxel-resistant lung cancer cells and overexpression of miR-16 along with miR-17 causes unprecedented sensitivity by simultaneously modulating autophagy and apoptosis.

Cellular signalling (2014-12-02)
Abhisek Chatterjee, Dhrubajyoti Chattopadhyay, Gopal Chakrabarti
RESUMEN

Non-small cell lung cancer is one of the most aggressive cancers as per as the mortality and occurrence is concerned. Paclitaxel based chemotherapeutic regimes are now used as an important option for the treatment of lung cancer. However, resistance of lung cancer cells to paclitaxel continues to be a major clinical problem nowadays. Despite impressive initial clinical response, most of the patients eventually develop some degree of paclitaxel resistance in the course of treatment. Previously, utilizing miRNA arrays we reported that downregulation of miR-17 is at least partly involved in the development of paclitaxel resistance in lung cancer cells by modulating Beclin-1 expression [1]. In this study, we showed that miR-16 was also significantly downregulated in paclitaxel resistant lung cancer cells. We demonstrated that anti-apoptotic protein Bcl-2 was directly targeted miR-16 in paclitaxel resistant lung cancer cells. Moreover, in this report we showed that the combined overexpression of miR-16 and miR-17 and subsequent paclitaxel treatment greatly sensitized paclitaxel resistant lung cancer cells to paclitaxel by inducing apoptosis via caspase-3 mediated pathway. Combined overexpression of miR-16 and miR-17 greatly reduced Beclin-1 and Bcl-2 expressions respectively. Our results indicated that though miR-17 and miR-16 had no common target, both miR-16 and miR-17 jointly played roles in the development of paclitaxel resistance in lung cancer. miR-17 overexpression reduced cytoprotective autophagy by targeting Beclin-1, whereas overexpression of miR-16 potentiated paclitaxel induced apoptotic cell death by inhibiting anti-apoptotic protein Bcl-2.

MATERIALES
Número de producto
Marca
Descripción del producto

Sigma-Aldrich
Alcohol etílico puro 200, Molecular Biology
Sigma-Aldrich
Alcohol etílico puro, 200 proof, ACS reagent, ≥99.5%
Sigma-Aldrich
Alcohol etílico puro, 200 proof
Sigma-Aldrich
Dodecilsulfatosódico, BioReagent, suitable for electrophoresis, Molecular Biology, ≥98.5% (GC)
Sigma-Aldrich
Alcohol etílico puro, 200 proof, meets USP testing specifications
Sigma-Aldrich
Alcohol etílico puro, 200 proof, anhydrous, ≥99.5%
Sigma-Aldrich
Sodium fluoride, ACS reagent, ≥99%
Sigma-Aldrich
Dodecilsulfatosódico, ≥99.0% (GC), dust-free pellets
Sigma-Aldrich
DL-Ditiotreitol solution, BioUltra, Molecular Biology, ~1 M in H2O
Sigma-Aldrich
Alcohol etílico puro 190, for molecular biology
Sigma-Aldrich
L-Glutamina, meets USP testing specifications, suitable for cell culture, 99.0-101.0%, from non-animal source
Sigma-Aldrich
Dodecilsulfatosódico, ACS reagent, ≥99.0%
Sigma-Aldrich
Sodium dodecyl sulfate solution, BioUltra, Molecular Biology, 10% in H2O
Supelco
DL-Ditiotreitol solution, 1 M in H2O
Sigma-Aldrich
Alcohol etílico puro, 190 proof, ACS spectrophotometric grade, 95.0%
Sigma-Aldrich
Dodecilsulfatosódico, ReagentPlus®, ≥98.5% (GC)
Sigma-Aldrich
Ethylenediaminetetraacetic acid, ACS reagent, 99.4-100.6%, powder
Sigma-Aldrich
Etanol, ACS reagent, prima fine spirit, without additive, F15 o1
Sigma-Aldrich
L-Glutamina, ReagentPlus®, ≥99% (HPLC)
Sigma-Aldrich
Ethylenediaminetetraacetic acid, anhydrous, crystalline, BioReagent, suitable for cell culture
Sigma-Aldrich
Ethylenediaminetetraacetic acid solution, 0.02% in DPBS (0.5 mM), sterile-filtered, BioReagent, suitable for cell culture
Sigma-Aldrich
Dodecilsulfatosódico, BioUltra, Molecular Biology, ≥99.0% (GC)
Sigma-Aldrich
Sodium dodecyl sulfate solution, BioUltra, 20% in H2O
Sigma-Aldrich
Ethylenediaminetetraacetic acid disodium salt solution, BioUltra, pH 8.0, ~0.5 M in H2O
SAFC
L-Glutamina
Supelco
Dodecilsulfatosódico, dust-free pellets, suitable for electrophoresis, Molecular Biology, ≥99.0% (GC)
Sigma-Aldrich
Ethylenediaminetetraacetic acid, 99.995% trace metals basis
Sigma-Aldrich
Ethylenediaminetetraacetic acid, BioUltra, anhydrous, ≥99% (titration)
Sigma-Aldrich
Sodium fluoride, ReagentPlus®, ≥99%
Supelco
Dodecilsulfatosódico, suitable for ion pair chromatography, LiChropur, ≥99.0%