Größe auswählen
Über diesen Artikel
Fortfahren mit
Materialien
self-standing
Leistungsmerkmale
binder
Hersteller/Markenname
PureProteome
Methode(n)
RNA purification: suitable (with magnetic beads)
protein purification: suitable
Versandbedingung
ambient
Verwandte Kategorien
1 of 4
Dieser Artikel | LSKMAGL10 | LSKMAGS08 | LSKMAGG |
|---|---|---|---|
| feature binder | feature - | feature binder | feature - |
| manufacturer/tradename PureProteome | manufacturer/tradename PureProteome | manufacturer/tradename PureProteome | manufacturer/tradename PureProteome |
| material self-standing | material - | material self-standing | material - |
| technique(s) RNA purification: suitable (with magnetic beads) | technique(s) depletion: suitable (serum), protein purification: suitable | technique(s) RNA purification: suitable (with magnetic beads), protein purification: suitable | technique(s) depletion: suitable (serum), immunoprecipitation (IP): suitable, protein purification: suitable |
| shipped in ambient | shipped in wet ice | shipped in ambient | shipped in wet ice |
Allgemeine Beschreibung
Anwendung
- purification with magnetic beads
- protein purification
- in the purification of the heat shock protein 90 (Hsp90)/ Cdc37 (cell division cycle 37)/ Cyclin-dependent kinase 4 (Cdk4) complex to incubate and wash the beads with 10 bed volumes of lysis buffer[1]
Sonstige Hinweise
Analysenzertifikate (COA)
Suchen Sie nach Analysenzertifikate (COA), indem Sie die Lot-/Chargennummer des Produkts eingeben. Lot- und Chargennummern sind auf dem Produktetikett hinter den Wörtern ‘Lot’ oder ‘Batch’ (Lot oder Charge) zu finden.
Besitzen Sie dieses Produkt bereits?
In der Dokumentenbibliothek finden Sie die Dokumentation zu den Produkten, die Sie kürzlich erworben haben.
Verwandter Inhalt
Read an automated protocol for protein purification using PureProteome™ nickel magnetic beads on the AAW™ automated assay workstation and see results comparing manual vs automated runs.
Traditionally, protein purification from E. coli consists of four distinct phases: harvest, bacterial cell lysis, lysate clarification and protein purification. Bacterial lysis typically requires several time-consuming, hands-on steps, such as freeze/thaw cycles and sonication. These harsh lysis techniques may negatively impact protein quality and contribute to sample-to-sample variability. To maintain protein activity and integrity, detergent-based lysis buffers are routinely used to avoid mechanical protein extraction methods. Regardless of the lysis method used, centrifugation is traditionally required to pellet unwanted cell debris and permit recovery of the clarified lysate. The final step, purification, is frequently performed using affinity media specific for expressed epitope tags. Agarose-based media have typically been used, either as a slurry in microcentrifuge tubes or packed into gravity-driven or spin columns. While easier to manipulate, columns are greatly affected by lysate consistency and carryover of cell debris, which can lead to clogging of the column frits.
Immunoprecipitation (IP) is a powerful technique for proteomic screening, biomarker discovery, and signaling network elucidation. It is frequently used to enrich target proteins from complex samples such as cell lysates or extracts. Traditional IP protocols use Protein A, Protein G or a mixture of Protein A and G coupled to a solid support resin, such as agarose beads, to capture an antigen/antibody complex in solution. As the number of samples increase, the traditional, manual IP method can be time-consuming. Processing of multiple IP reactions in parallel can introduce complexity, variability and pipetting errors, which may affect reproducibility.
Active Filters
Unser Team von Wissenschaftlern verfügt über Erfahrung in allen Forschungsbereichen einschließlich Life Science, Materialwissenschaften, chemischer Synthese, Chromatographie, Analytik und vielen mehr..
Setzen Sie sich mit dem technischen Dienst in Verbindung


