Direkt zum Inhalt
Merck
  • Characterization of a T-DNA promoter trap line of Arabidopsis thaliana uncovers a cryptic bi-directional promoter.

Characterization of a T-DNA promoter trap line of Arabidopsis thaliana uncovers a cryptic bi-directional promoter.

Gene (2013-04-25)
Pritu Pratibha, Sunil Kumar Singh, Isha Sharma, Ravi Kumar, Ramamurthy Srinivasan, Shripad Ramachandra Bhat, Paramvir Singh Ahuja, Yelam Sreenivasulu
ZUSAMMENFASSUNG

Investigation of the transgenic Arabidopsis promoter trap line GFP-868 that showed GFP expression only in anthers revealed the T-DNA insertion at 461bp upstream to the hypothetical gene At4g10596 with the GFP reporter gene in head-to-head orientation to the At4g10596 gene. The expression of the At4g10596 gene in wild type and in GFP-868 plant homozygous for T-DNA insertion was comparable and found in all tissues tested, while the GFP expression was restricted to anthers of the GFP-868 plants suggesting that the 461bp fragment separating the two genes in the GFP-868 line is functioning as bi-directional promoter. This 461bp fragment was cloned upstream to the GUS gene in two orientations to test for bi-directional promoter activity. Transgenic Arabidopsis plants carrying either of these constructs showed GUS activity in anthers indicating that this fragment behaves as bi-directional promoter specific to anthers. These results were also supported by the presence of cis-acting motifs such as TATA box and POLLEN1LELAT52 (AGAAA) within the 461bp sequence in both orientations. However, transcripts corresponding to the upstream sequences beyond -461 nucleotides were not detected in the wild type suggesting that this 461bp fragment is a cryptic promoter. The significance of the promoter trap approach and the usefulness of this type of promoter are discussed.

MATERIALIEN
Produktnummer
Marke
Produktbeschreibung

Sigma-Aldrich
β-Glucuronidase aus Helix pomatia, Type HP-2, aqueous solution, ≥100,000 units/mL
Sigma-Aldrich
ββ-Glucuronidase aus E. coli, Type IX-A, lyophilized powder, 1,000,000-5,000,000 units/g protein (30 min assay)
Sigma-Aldrich
β-Glucuronidase aus Napfschnecke (Patella vulgata), Type L-II, lyophilized powder, 1,000,000-3,000,000 units/g solid
Sigma-Aldrich
ββ-Glucuronidase aus E. coli, Type VII-A, lyophilized powder, 5,000,000-20,000,000 units/g protein, pH 6.8 (30 min assay)
Sigma-Aldrich
β-Glucuronidase aus Helix pomatia, Type H-2, aqueous solution, ≥85,000 units/mL
Sigma-Aldrich
β-Glucuronidase aus Helix pomatia, Type H-1, partially purified powder, ≥300,000 units/g solid
Sigma-Aldrich
β-Glucuronidase aus Rinderleber, Type B-1, ≥1,000,000 units/g solid
Sigma-Aldrich
β-Glucuronidase aus Helix pomatia, Type H-5, lyophilized powder, ≥400,000 units/g solid
Sigma-Aldrich
ββ-Glucuronidase aus E. coli, >20,000,000 units/g protein, recombinant, expressed in E. coli, aqueous glycerol solution
Sigma-Aldrich
β-Glucuronidase aus Helix pomatia, Type H-3, aqueous solution, ≥90,000 units/mL
Sigma-Aldrich
β-Glucuronidase aus Helix pomatia, Type HP-2S, aqueous solution, ≥90,000 units/mL
Sigma-Aldrich
ββ-Glucuronidase aus E. coli, ≥10,000,000 units/g protein (30 min assay), recombinant, expressed in E. coli overproducing strain, lyophilized powder
Sigma-Aldrich
ββ-Glucuronidase aus E. coli, ≥20,000 units/mg protein, recombinant, expressed in E. coli overproducing strain, lyophilized powder
Sigma-Aldrich
ββ-Glucuronidase aus E. coli, aqueous glycerol solution, ≥5,000,000 units/g protein, pH 6.8 (biuret)
Sigma-Aldrich
β-Glucuronidase aus Rinderleber, Type B-3, ≥2,000,000 units/g solid
Sigma-Aldrich
β-Glucuronidase aus Helix pomatia, Type H-3AF, aqueous solution, ≥60,000 units/mL
Sigma-Aldrich
β-Glucuronidase from Helix aspersa (garden snail), Type HA-4