Direkt zum Inhalt
Merck
  • In vivo imaging of reactive oxygen species in mouse brain by using [3H]hydromethidine as a potential radical trapping radiotracer.

In vivo imaging of reactive oxygen species in mouse brain by using [3H]hydromethidine as a potential radical trapping radiotracer.

Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism (2014-09-18)
Kohji Abe, Nozomi Takai, Kazumi Fukumoto, Natsumi Imamoto, Misato Tonomura, Miwa Ito, Naoki Kanegawa, Katsunori Sakai, Kenji Morimoto, Kenichiro Todoroki, Osamu Inoue
ZUSAMMENFASSUNG

To assess reactive oxygen species (ROS) production by detecting the fluorescent oxidation product, hydroethidine has been used extensively. The present study was undertaken to evaluate the potential of the hydroethidine derivative as a radiotracer to measure in vivo brain ROS production. [(3)H]-labeled N-methyl-2,3-diamino-6-phenyl-dihydrophenanthridine ([(3)H]Hydromethidine) was synthesized, and evaluated using in vitro radical-induced oxidization and in vivo brain ROS production model. In vitro studies have indicated that [(3)H]Hydromethidine is converted to oxidized products by a superoxide radical (O(2)(•)-) and a hydroxyl radical (OH(•)-) but not hydrogen peroxide (H(2)O(2)). In vivo whole-body distribution study showed that [(3)H]Hydromethidine rapidly penetrated the brain and then was washed out in normal mice. Microinjection of sodium nitroprusside (SNP) into the brain was performed to produce ROS such as OH(•)- via Fenton reaction. A significant accumulation of radioactivity immediately after [(3)H]Hydromethidine injection was seen in the side of the brain treated with SNP (5 and 20 nmol) compared with that in the contralateral side. These results indicated that [(3)H]Hydromethidine freely penetrated into the brain where it was rapidly converted to oxidized forms, which were trapped there in response to the production of ROS. Thus, [(3)H]Hydromethidine should be useful as a radical trapping radiotracer in the brain.

MATERIALIEN
Produktnummer
Marke
Produktbeschreibung

Sigma-Aldrich
Acetonitril, suitable for HPLC, gradient grade, ≥99.9%
Sigma-Aldrich
Dimethylsulfoxid, Hybri-Max, sterile-filtered, BioReagent, suitable for hybridoma, ≥99.7%
Sigma-Aldrich
Dimethylsulfoxid, ACS reagent, ≥99.9%
Sigma-Aldrich
Dimethylsulfoxid, Molecular Biology
Sigma-Aldrich
Dimethylsulfoxid, suitable for HPLC, ≥99.7%
Sigma-Aldrich
Ethylacetat, ACS reagent, ≥99.5%
Sigma-Aldrich
Acetonitril, HPLC Plus, ≥99.9%
Sigma-Aldrich
Dimethylsulfoxid, sterile-filtered, BioPerformance Certified, meets EP, USP testing specifications, suitable for hybridoma
Sigma-Aldrich
Ethylacetat, suitable for HPLC, ≥99.7%
Sigma-Aldrich
Natriumbicarbonat, ACS reagent, ≥99.7%
Sigma-Aldrich
Dimethylsulfoxid, ReagentPlus®, ≥99.5%
Sigma-Aldrich
Dimethylsulfoxid, anhydrous, ≥99.9%
Sigma-Aldrich
Ethylacetat, HPLC Plus, for HPLC, GC, and residue analysis, 99.9%
Sigma-Aldrich
Acetonitril, ACS reagent, ≥99.5%
Sigma-Aldrich
Hexan, ReagentPlus®, ≥99%
Sigma-Aldrich
Hexan, suitable for HPLC, ≥95%
Sigma-Aldrich
Acetonitril, anhydrous, 99.8%
Sigma-Aldrich
Natriumbicarbonat, powder, BioReagent, Molecular Biology, suitable for cell culture, suitable for insect cell culture
Sigma-Aldrich
Dimethylsulfoxid, ≥99.5% (GC), suitable for plant cell culture
Sigma-Aldrich
Natriumbicarbonat, ReagentPlus®, ≥99.5%, powder
Sigma-Aldrich
Natriumborhydrid, powder, ≥98.0%
Sigma-Aldrich
Natriumnitroprussid Dihydrat, puriss. p.a., ACS reagent, reag. Ph. Eur., ≥99%
Sigma-Aldrich
Acetonitril, suitable for HPLC, gradient grade, ≥99.9%
Sigma-Aldrich
Hexan, HPLC Plus, for HPLC, GC, and residue analysis, ≥95%
Sigma-Aldrich
Natriumnitroprussiat Dihydrat, ACS reagent, ≥99%
Sigma-Aldrich
Natriumborhydrid, ReagentPlus®, 99%
Sigma-Aldrich
Hexan, Laboratory Reagent, ≥95%
Sigma-Aldrich
Dimethylsulfoxid, BioUltra, Molecular Biology, ≥99.5% (GC)
Sigma-Aldrich
Ethylacetat, suitable for HPLC, ≥99.8%
Sigma-Aldrich
Ethylacetat, anhydrous, 99.8%