Direkt zum Inhalt
Merck
  • Development of a sensitive and selective liquid chromatography-mass spectrometry method for high throughput analysis of paralytic shellfish toxins using graphitised carbon solid phase extraction.

Development of a sensitive and selective liquid chromatography-mass spectrometry method for high throughput analysis of paralytic shellfish toxins using graphitised carbon solid phase extraction.

Journal of chromatography. A (2015-02-24)
Michael J Boundy, Andrew I Selwood, D Tim Harwood, Paul S McNabb, Andrew D Turner
ZUSAMMENFASSUNG

Routine regulatory monitoring of paralytic shellfish toxins (PST) commonly employs oxidative derivitisation and complex liquid chromatography fluorescence detection methods (LC-FL). The pre-column oxidation LC-FL method is currently implemented in New Zealand and the United Kingdom. When using this method positive samples are fractionated and two different oxidations are required to confirm the identity and quantity of each PST analogue present. There is a need for alternative methods that are simpler, provide faster turnaround times and have improved detection limits. Hydrophilic interaction liquid chromatography (HILIC) HPLC-MS/MS analysis of PST has been used for research purposes, but high detection limits and substantial sample matrix issues have prevented it from becoming a viable alternative for routine monitoring purposes. We have developed a HILIC UPLC-MS/MS method for paralytic shellfish toxins with an optimised desalting clean-up procedure on inexpensive carbon solid phase extraction cartridges for reduction of matrix interferences. This represents a major technical breakthrough and allows sensitive, selective and rapid analysis of paralytic shellfish toxins from a variety of sample types, including many commercially produced bivalve molluscan shellfish species. Additionally, this analytical approach avoids the need for complex calculations to determine sample toxicity, as unlike other methods each PST analogue is able to be quantified as a single resolved peak. This article presents the method development and optimisation information. A thorough single laboratory validation study has subsequently been performed and this data will be presented elsewhere.

MATERIALIEN
Produktnummer
Marke
Produktbeschreibung

Sigma-Aldrich
Acetonitril, suitable for HPLC, gradient grade, ≥99.9%
Sigma-Aldrich
Methanol, suitable for HPLC, ≥99.9%
Sigma-Aldrich
Methanol, ACS reagent, ≥99.8%
Sigma-Aldrich
Ammoniumhydroxid -Lösung, ACS reagent, 28.0-30.0% NH3 basis
Sigma-Aldrich
Essigsäure, glacial, ACS reagent, ≥99.7%
Sigma-Aldrich
Acetonitril, HPLC Plus, ≥99.9%
Sigma-Aldrich
Essigsäure, glacial, ReagentPlus®, ≥99%
Sigma-Aldrich
Ameisensäure, reagent grade, ≥95%
Sigma-Aldrich
Methanol, HPLC Plus, ≥99.9%
Sigma-Aldrich
Acetonitril, ACS reagent, ≥99.5%
Sigma-Aldrich
Ameisensäure, ACS reagent, ≥96%
Sigma-Aldrich
Acetonitril, anhydrous, 99.8%
Sigma-Aldrich
Ammoniumhydroxid -Lösung, 28% NH3 in H2O, ≥99.99% trace metals basis
Sigma-Aldrich
Methanol, anhydrous, 99.8%
Sigma-Aldrich
Ammoniak -Lösung, 7 N in methanol
Sigma-Aldrich
Acetonitril, suitable for HPLC, gradient grade, ≥99.9%
Sigma-Aldrich
Essigsäure, glacial, ≥99.99% trace metals basis
Sigma-Aldrich
Essigsäure -Lösung, suitable for HPLC
Sigma-Aldrich
Methanol, Laboratory Reagent, ≥99.6%
Sigma-Aldrich
Methanol, suitable for HPLC, gradient grade, suitable as ACS-grade LC reagent, ≥99.9%
Sigma-Aldrich
Ameisensäure, ACS reagent, ≥88%
Sigma-Aldrich
Methanol, ACS spectrophotometric grade, ≥99.9%
Sigma-Aldrich
Methanol, ACS reagent, ≥99.8%
Sigma-Aldrich
Methanol, Absolute - Acetone free
Sigma-Aldrich
Ammoniak -Lösung, 2.0 M in ethanol
USP
Methylalkohol, United States Pharmacopeia (USP) Reference Standard
Sigma-Aldrich
Methanol, BioReagent, ≥99.93%
Sigma-Aldrich
Ammoniak, anhydrous, ≥99.98%
Supelco
Methanol, analytical standard
Sigma-Aldrich
Ammoniak -Lösung, 0.4 M in dioxane